
Emil Eriksson 

Umeå University 

2016 

Bachelor thesis project, 15 ECTS 

Bachelor of Science Program in Mechanical engineering, 180 ECTS 

 

Self-Balancing Robot Control System in 
CODESYS for Raspberry Pi 

Design and Construction of a Self-Balancing Robot using PLC-
programming tools 

Emil Eriksson 

 
  



Emil Eriksson 

Umeå University 

2016 

Bachelor thesis project, 15 ECTS 

Bachelor of Science Program in Mechanical engineering, 180 ECTS 

 



 
3 

 

Foreword 
 
This project serves as my bachelor thesis project in mechanical engineering at Umeå 
University. The project was carried out at, and founded by The Department of Applied 
Physics and Electronics at Umeå University. 
I would like to thank Fredrik Holmgren at the University’s workshop for assisting me in laser 
cutting during the manufacturing process, Henrik Jonsson and Daniel Mårtensson for 
reviewing this report. 
Thanks also goes out to Albin Flyckt, for reflecting ideas.   
 
Finally, I would like to thank Sven Rönnbäck who was my supervisor during this project for 
assisting me during the whole process.  
 
 
 
 
 
_____________________________ 
 
Emil Eriksson 
Umeå 2017 
 
  



 
4 

 

Abstract 
 
The Department of Applied Physics and Electronics at Umeå University offers education and 
conducts research in the field of automation and robotics. To raise the competence in 
automation in the CODESYS development environment it’s proposed to build a remote 
controlled self-balancing robot as a testing platform which is then programmed using 
CODESYS for Raspberry Pi. 
 
The chassis of the robot consists of laser-cut plexiglass plates, stacked on top of each other 
and fixed using threaded rods, nuts and washers. On these plates the robots’ electrical 
components, wheels and motors are attached. 
 
The control system is designed as a feedback loop where the robots’ angle relative to the 
gravity vector is the controlled variable. A PID-controller is used as the system controller and 
a Kalman Filter is used to filter the input signals from the IMU board using input from both 
the accelerometer and the gyro. 
 
The control system is implemented in CODESYS as a Function Block Diagram (FBD) using 
both pre-made, standard function blocks and customized function blocks. By using the in-
built web-visualization tool the robot can be remote controlled via Wi-Fi. 
 
After tuning the Kalman Filter through plot-analysis and the PID-controller through Ziegler-
Nichols method the robot can stay balanced on a flat surface. 
 
The robots’ performance is tested through a series of test scenarios of which it only completes 
one out of four. The project ran out of time before further testing could be done. 
 
For future work one could improve the performance of the PID-controller through more 
sophisticated tuning methods. One can also add a steering-function or test different type of 
controllers.



 
5 

 

Table of contents 

 
1 Introduction ........................................................................................................................ 7 

1.1 Background .................................................................................................................. 7 
1.2 Aim .............................................................................................................................. 7 
1.3 Goal .............................................................................................................................. 7 
1.4 Conditions ................................................................................................................... 7 

1.4.1 Financing/Budget .................................................................................................... 7 
1.4.2 Timeframe ............................................................................................................ 7 
1.4.3 Material/Equipment ............................................................................................ 8 
1.4.4 Facilities ............................................................................................................... 8 
1.4.5 Specification ......................................................................................................... 8 
1.4.6 Test scenarios ....................................................................................................... 8 

2 Frame of reference .............................................................................................................. 9 
2.1 Self-balancing robot .................................................................................................... 9 
2.2 The control system ..................................................................................................... 11 
2.3 Programmable Logic Controllers (PLC) .....................................................................12 
2.4 Electrical system ......................................................................................................... 13 

2.4.1 Raspberry Pi ........................................................................................................ 13 
2.4.2 I/O unit (Arduino Uno) .......................................................................................14 
2.4.3 Motors .................................................................................................................14 
2.4.4 Motor Drive ......................................................................................................... 15 
2.4.5 IMU breakout board ............................................................................................16 
2.4.6 Logic Level converter (LLC) ................................................................................16 
2.4.7 Distance sensor ................................................................................................... 17 
2.4.8 Battery ................................................................................................................. 17 
2.4.9 12V to 5V converter ............................................................................................ 18 

2.5 Software ..................................................................................................................... 18 
2.5.1 CODESYS ........................................................................................................... 18 
2.5.2 CODESYS Control application for Raspberry Pi ................................................ 18 

2.6 Filter ...........................................................................................................................19 
2.6.1 The Discrete Kalman Filter .................................................................................19 

2.7 Communication ......................................................................................................... 20 
2.7.1 I2C ....................................................................................................................... 20 

3 The process ........................................................................................................................21 
3.1 Robot design ...............................................................................................................21 
3.2 Manufacture and assemble ........................................................................................ 22 
3.3 Startup and configuration of the Raspberry Pi ......................................................... 25 

3.3.1 Install the OS ...................................................................................................... 25 
3.3.2 WLAN ................................................................................................................. 25 
3.3.3 Enable I2C-communication ................................................................................ 25 

3.4 Install CODESYS on the PC ....................................................................................... 25 
3.4.1 Install CODESYS Control for Raspberry Pi package .......................................... 25 
3.4.2 Install OSCAT Basic package ............................................................................. 25 
3.4.3 Install CODESYS to the RPi ............................................................................... 25 

3.5 Programming the control system .............................................................................. 26 
3.5.1 MPU9150 gyro board ......................................................................................... 27 
3.5.2 Calculate the angle ............................................................................................. 30 
3.5.3 Kalman Filter ..................................................................................................... 33 
3.5.4 The PID controller .............................................................................................. 37 
3.5.5 MD25 motor driver board .................................................................................. 38 

3.6 Visualizations............................................................................................................. 42 
3.6.1 GUI ..................................................................................................................... 42 



 
6 

 

3.6.2 Trace Plots .......................................................................................................... 43 
4 Experiments, results and analysis .................................................................................... 44 

4.1 Kalman filter tuning and performance ...................................................................... 44 
4.1.1 Static measurements .............................................................................................. 44 

4.2 PID-tuning and performance .................................................................................... 45 
4.3 Motor and MD25 performance ................................................................................. 46 
4.4 Specifications and test scenario analysis ................................................................... 47 
4.5 Test scenario 1 ........................................................................................................... 47 

4.5.1 Plots .................................................................................................................... 49 
5 Discussion ......................................................................................................................... 50 
6 Conclusions ........................................................................................................................ 51 

6.1 Future work ................................................................................................................ 51 
6.2 Reflection on work ..................................................................................................... 52 

References ................................................................................................................................ 53 
7 Appendix ........................................................................................................................... 55 

7.1 PROGRAM CODE ..................................................................................................... 56 
7.1.1 Main program ........................................................................................................ 56 
7.1.2 ATAN2 Function block ....................................................................................... 59 
7.1.3 Kalman Filter Function block ............................................................................ 60 
7.1.4 MD25 Function block ......................................................................................... 63 
7.1.5 MD25 Device description file ............................................................................. 66 

7.2 MACHINE DRAWING OF PMMA-PLATE ............................................................... 68 
 



 
7 

 

1 Introduction 

1.1 Background 
Umeå University is one of Sweden’s large universities with almost 31000 students 
(postgraduate students included) and almost 4300 employees in 2015 [1]. The university 
offers a wide range of education and conducts research in areas from business, medicine, 
humanities, and natural science.  
 
The Department of Applied Physics and Electronics offers courses, within the Bachelor and 
Master programs, in building technology, energy technology, mechanical engineering, 
electronics, and media technology [2]. The department conducts research in two main 
subjects; electronics and system engineering and energy technology.  
 
Within this area of subjects the department conducts research in automation and robotics. 
For this purpose, it’s proposed to build a platform for experiments using the industrial 
development environment CODESYS. CODESYS is widely used in the industry for 
programming Programmable Logic Controllers, or PLCs. A PLC is a type of computer 
commonly used for controlling industrial processes. 
 
It’s proposed that the platform is built in the form of a two-wheel self-balanced robot, which 
has become a classic platform for experiments in control theory because of its ability to 
display abstract control concepts such as robustness, system stability, controllability etc. [3]. 

1.2 Aim 
The purpose of this project is to raise the competence in automation in the CODESYS 
development environment and its application in real-time, autonomous systems. 

1.3 Goal 
The goal of this project is to design a two-wheel balancing robot controlled via Wi-Fi. The 
software should be developed using CODESYS. 
 
The project can be used as a reference in future implementation of CODESYS in automation 
education and research. 

1.4 Conditions 
The conditions and limitations of the project are as follows. 

1.4.1 Financing/Budget 
The project is financed by The Department of Applied Physics and Electronics at Umeå 
University. 
The budget is set to 3000 SEK. 

1.4.2 Timeframe 
400 hours. 
 
 
 
 
 
 
 



 
8 

 

1.4.3 Material/Equipment 
Material and equipment at students own expense: 

• PC 

• Writing material 
 
Remaining material and equipment at The Department of Applied Physics and Electronics 
expense, for example: 

• Software license, CODESYS for RPi 

• Raspberry Pi unit 

• I/O unit, for example a Arduino UNO 

• Mechanics (wheels, mounting plates, nuts and screws, etc.) 

• Electronics 

• Soldering equipment 

• Tools 
 

1.4.4 Facilities 
Facilities at the Department of Applied Physics and Electronics: 

• Workshop 

• Electrical engineering lab 

• Computer lab 

• The students home office 

1.4.5 Specification 
The robot specifications are listed in order of priority and should be met in that order.  
 

1. The robot should be equipped with a Raspberry Pi with CODESYS (high priority) 
2. The robot should have TWO wheels (high priority) 
3. Controller parameters should be controlled via web-interface (high priority) 
4. The robot should be equipped with a IMU breakout board 
5. The robot should be able to keep its balance like an inverted pendulum 
6. The robot should be able to avoid collision by using a distance sensor 
7. The robot should be controlled using a smartphone (web-interface) 
8. The robot should have on-board power supply in the form of batteries. The size of the 

batteries should be based on the power usage of the electronics. 
9. Testing activities should be noted and filmed 
10. Web-interface should present total travelled distance (low priority) 

1.4.6 Test scenarios 
To analyze the regulation-process, data should be retrieved during the following test 
scenarios. 
 

1. The robot balances on a flat surface and a tilted surface (30°). 
2. The robot is wireless controlled. 
3. The robot brakes automatically for obstacles. 
4. The robot brakes automatically and drives around obstacles. 

 



 
9 

 

2 Frame of reference 

2.1 Self-balancing robot 
The self-balancing robot has become a standard platform for testing the performance of a 
controlled system. It originates form the principle of the inverted pendulum (Figure 1) which 
is a classic problem in control theory. 
 
The inverted pendulum is often modeled as a body is attached to a massless rod which, 
through a hinge joint, is attached to a moving cart on wheels. By responding to the 
accelerating body as gravity pulls it down with an opposite acceleration of the cart, the 
inverted pendulum can keep its upright position. 
 

 
 

Figure 1: A schematic drawing of the inverted pendulum 

 
For the balancing robot (Figure 2), the wheels represent the moving cart and the robots 
center of mass, wheels excluded, represent the body.  
 
 



 
10 

 

 
Figure 2: The self-balancing robot built for this project 

 
 
The personal transporter vehicle Segway [4](Figure 3) is an example of an inverted pendulum 
control problem. 
 

 
Figure 3: Segway [5]. 



 
11 

 

 

2.2 The control system 
By having the center of mass placed above the pivot point, the mechanical system of the self-
balancing robot is inherently unstable and must have constant feedback from the control 
system to maintain its balance. This control process can be described by the feedback loop in 
Figure 4, terminology used in control theory is underlined. 
 

1. The goal is to stay balanced meaning that the angle of the robots’ position relative to 
the gravity vector is: 0°. This is called the target value of the controlled variable. 

 
2. A gyro sensor attached to the robot measures the robots current angle. The actual 

value. 
 

3. Included in the software is a comparator. It calculates the difference between the 
target value and the actual value. This is called the error and has the symbol letter e. 
 

4. By using this value, one can calculate the control signal that the computer will send to 
the motors so that the robot will accelerate enough, but not too much, to return to its 
balanced position. This is done by the regulator. 
 

5. This signal is then transformed into motion by the motors acting as the actuators in 
this example. 
 

6. The process in this example is the balancing robot itself and since it’s always affected 
by gravity, this is causing a disturbance of the robots’ angle. 
  

7. The new angle is measured by the gyro sensor, and so the loop start over. 
 
 

 
Figure 4: The basic principle of the general control loop.  



 
12 

 

2.3 Programmable Logic Controllers (PLC) 
Using a PLC is the common way of controlling and monitoring an industrial process, such as 
the fluid level in a tank or the temperature inside a building. 
For industrial applications, the PLCs are often mounted as modular racks in cabinets (Figure 
5 and 6).  
 
 

 
Figure 5: PLC cabinet [6] 

 
An example of components in a PLC rack are: 

• The controller (CPU, memory etc.) 

• Power supply 

• I/O-modules (analog input, digital input, digital output etc.) 

• End modules that terminate the communication bus 



 
13 

 

 
Figure 6: Example of a PLC rack [7]. 

 
A PLC works much like a computer and as such it must be programmed to be able to perform 
its desired task.  
 
Since the PLC has it origin in relay-based industrial control systems, several of the 
programming languages used is of graphical character. For example, there is Ladder 
Diagram (LD) which originates from the relay wiring diagrams used by electricians or 
Function Block Diagram (FBD) with symbols and functions recognizable from digital 
technology [8].  

2.4 Electrical system 
The individual components of the electrical system are listed here along with a short 
description. 

2.4.1 Raspberry Pi 
To run CODESYS, the Raspberry Pi was chosen as the main controller. In this case the 

Raspberry Pi 1 model, as shown in Figure 7.  
The Raspberry Pi from The Raspberry Pi Foundation is a credit card sized single-board 
computer, used primarily for computer education, home automation, robotics, and so on.  
The processing power is provided by the Broadcom BCM2835 SoC (system-on-a-chip), 
containing the 700 MHz single-core ARM1176JZF-S CPU (central processing unit) [9].  
 
It has 26-pins including two output power pins of 3.3V and 5V and SDA and SCL for I2C 
communication. 17 of these are GPIO-pins that can be used for digital input and output.  



 
14 

 

It’s requires 5 V input power through the micro-USB port and can be powered through for 
example a USB-port or smartphone charger.  
 
For this project the Raspberry Pi is loaded with the Debian/LINUX-based operating system 
Raspbian since it’s recommended in the provided CODESYS documentation [10]. 
 

 
Figure 7: Raspberry Pi 1 model B 

2.4.2 I/O unit (Arduino Uno) 
Since the Raspberry Pi is limited to digital input and output and a lot of sensors use analog 
signals a I/O unit is used. An Arduino Uno (Figure 8) is programmed for this purpose. 
 
The Arduino is a microcontroller board popular among hobbyists for experimental use.  
It has 6 analog input pins and 14 digital I/O-pins of which 6 provide PWM output. There are 
also pins with a specialized function, for example for I2C communication. 
It can be powered through 12V and is on 5V logic.  
The downloadable Arduino Software (IDE) is used to write the program and then load it to 
the Arduino by connecting the computer via USB. [11]  
 

 
Figure 8: Arduino Uno 

2.4.3 Motors 
The motors chosen for this project are the EMG30 Gearmotor (Figure 9) with encoder from 
Robot Electronics since the motors were already in stock at The Department of Applied 
Physics and Electronics.  
 
It is a 12V motor equipped with encoders and a 30:1 reduction gearbox. 
 



 
15 

 

 
Figure 9: EMG30 Gearmotor with encoder 

2.4.4 Motor Drive 
As motor drive the MD25 Motor Drive from Robot Electronics (Figure 10) was chosen since it 
was already in stock at The Department of Applied Physics and Electronics. 
 
This motor drive was designed to work with two EMG30 motors [12]. It can be controlled via 
I2C as well as STTL serial on 5V logic.  
The main features as described by the manufacturer are [12]: 
 

• Reads and counts motors encoder pulses 

• Drives two motors independently 

• Reads motor current 

• 12V power input 

• Onboard 5V regulator 

• Steering feature, a robot can be turned by sent value. 

• Variable acceleration and power regulation. 
 
One can choose whether to send speed or turn input as signed values ranging from -128 to 
127 where 0 is stop, or as unsigned values ranging from 0 to 255 where 128 is stop.  
 
 

 
Figure 10: MD25 Motor drive 

 



 
16 

 

2.4.5 IMU breakout board 
To measure the robots tilt and acceleration an IMU or Internal Measurement Unit is needed. 
The MPU9150 breakout board from Drotek (shown in Figure 11), with the MPU9150-chip 
[13] from InvenSense, is chosen since there is already a library and device description file 
included in the Raspberry Pi CODESYS-package.  
It’s a 9-DOF (degrees of freedom) IMU meaning it has a 3-axis gyroscope measuring angular 
velocity, a 3-axis accelerometer measuring acceleration and a 3-axis magnetometer that 
functions like a compass. It also has a temperature sensor [13].  
Although the magnetometer won’t be used in this project, it can still be interesting to have 
access to since this robot is meant to be used as a platform for future experiments. 
 
It’s powered by 5V or 3.3V and communicates via the I2C -bus. 
 

 
Figure 11: MPU9150 IMU from Drotek 

 

2.4.6 Logic Level converter (LLC) 
Since the system communicates via I2C with different logic levels (3.3V and 5V) a converter is 
used to safely connect the components.  
The LLC from Sparkfun (Figure 12) is chosen since it is reasonably priced and there is a 
detailed tutorial on how it works and how it’s used at the Sparkfun website; 
https://learn.sparkfun.com/tutorials/using-the-logic-level-converter.  
 
It has two bi-directional shifters marked TXO and TXI and since I2C communication works in 
both ways, this is where the SLA and SCL wires are connected to the LLC [14]. 
 

 
Figure 12: Logic Level Converter 



 
17 

 

2.4.7 Distance sensor 
To detect obstacles and brake automatically the robot is equipped with a SHARP 
GP2Y0A21YK infrared distance sensor (Figure 13). It detects objects at a distance ranging 
from 10 to 80 cm and outputs a nonlinear analog signal between 0 to 3.3V [15]. 
 

 
Figure 13: SHARP GP2Y0A21YK infrared distance sensor 

2.4.8 Battery 
As the power source a 12V, 1.3 Ah lead-acid battery is used, visible in Figure 14. The reason 
for this is that the motors require a 12V power source and the acid-lead battery is available at 
a low cost compared with more energy-dense alternatives such as NiMH-batteries. It can also 
be recharged with a conventional car-battery charger. 
 

 
Figure 14: Battery 

 
The battery life time is calculated according to table 1. 
 

Table 1: The total power consumption of the electrical components 

Device Current usage (mA) 

Raspberry Pi  1000 

Arduino Uno 50 

Motors (MD25) 2800 x 2 (max) 

Sensors (approx.) 200 

Total 6850 

 

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 (ℎ) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑐𝑜𝑛𝑐𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝐴)
=

1,3

6,85
≈ 0,2 ℎ = 12 𝑚𝑖𝑛 

 



 
18 

 

A total run time of about 12 minutes is enough for most experiments and is comparable with 
many RC-devices, such as toy-drones. Probably the lifetime will be significantly longer since 
the motors ideally never will run on full speed when the robot is balancing. 

2.4.9 12V to 5V converter 
The Raspberry Pi requires a 5V input power supply. To achieve this from a 12V battery, a 
converter is needed. A USB-charging device for cars, shown in Figure 15, is disassembled and 
modified for this purpose. 
 

 
Figure 15: 12V to 5V converter made from a USB-device charger for use in cars 

2.5 Software 

2.5.1 CODESYS 
The robot is programmed using the CODESYS [16] programming tool, version 3.5 by Smart 
Software Solutions GmbH. It’s a free-of-charge, hardware-independent programming system 
for PLCs widely used in automation industry. 
 
CODESYS follows the international standard IEC 61131-3 (International Electrotechnical 
Commission, 2013), which incorporates the programming languages used for PLC-
programming. These are; Ladder Diagram (LD), Instruction List (IL), Sequential Function 
Chart (SFC), Function Block Diagram (FBD) and Structured Text (ST). ST is a high-level 
language associated with Pascal and C. 
 
PLC-manufacturers have recently started to follow the standard IEC 61131-3 to a growing 
extent [8]. 
 
Included in CODESYS is also the IEC-specified functions and function blocks (FBs) as well as 
a series of libraries with ready-made functions for different applications. 
  
CODESYS also comes with a graphic visualization tool and a simulator for testing programs 
without hardware [17].  

2.5.2 CODESYS Control application for Raspberry Pi 
To use a Raspberry Pi as a PLC, a CODESYS package is installed on the Raspberry Pi. 
The package contains a CODESYS plugin to install and update the package on the Raspberry 
Pi as well as device description files for numerous Raspberry Pi compatible devices such as 
the Raspberry Pi Camera, Adafruit PWM and several types of gyros, including MPU9150. It 
also makes it possible to control these devices via I2C, SPI or 1-wire.  



 
19 

 

There are also instructions how to create additional device description files [10]. 

2.6 Filter 

2.6.1 The Discrete Kalman Filter 
The Kalman-filter is an algorithm which by using estimations based on the previous states of 
a system, taking measured values, predicted error, process- and measurement noise into 
account, makes an estimated prediction about the future states of the system which tend to 
be more accurate than single measurements [18].  
 
The filter is built as a feedback cycle with two groups of equations. One “Prediction”-group 
and one “Correction”-group as shown in Figure 16, and described with equations 1 to 8. To 
improve the robustness of the filter, a validation gate based on observations of the innovation 
is used. If the observations are inside of the Mahalanobis distance of the innovation, they are 
accepted. If they are not, they are thrown away. 
 

 
Figure 16: Kalman Filter feedback loop 

 
In this application, the Kalman Filter estimates two states; the pitch-angle and the gyro bias 
based on the measurements from the MPU9150. This is a common method for filtering the 
signal from a IMU and was for example used by Christian Sundin and Filip Thorstensson in 
their master thesis on an autonomous balancing robot at Chalmers in 2012 [19]. It’s also 
described on the blog TKJ Electronics [20]. 
 
After the initial estimates for 𝑥𝑘−1 and 𝑃𝑘−1 are set, the feedback cycle of the Kalman Filter 
performs as follows: 
  
Time update (“Predict”) 
 

1) Project the state ahead 
 

𝑥𝑘
− =  𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 

(1) 
2) Project the error covariance ahead 

𝑃𝑘
− =  𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 

(2) 
 
 
 



 
20 

 

Measurement update (“Correct”) 
 

1) Compute the Kalman gain, 𝐾𝑘 
𝐾𝑘 =  𝑃𝑘

−𝐻𝑇𝑆𝑘
−1 

(3) 
where the prediction covariance 𝑆𝑘 is calculated: 

𝑆𝑘 = 𝐻𝑃𝑘
−𝐻𝑇 + 𝑅  

(4) 
2) Update estimate with measurement zk 

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘𝑦𝑘 

(5) 
where the innovation y is calculated: 

𝑦𝑘 = 𝑧𝑘 − 𝐻𝑥𝑘
− 

(6) 
3) Calculate the Mahalanobis distance 𝑑𝑀 based on the innovation y.  

This is then used as a validation gate for the innovation. Observations outside 𝑑𝑀 are 
thrown away and 𝐾𝑘 = 0 if observation is not valid  

𝑑𝑀 = √𝑦𝑇𝑆−1𝑦 
(7) 

 
4) Update the error covariance 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
− 

(8) 
 

2.7 Communication 

2.7.1 I2C 
The I2C-protocol is chosen as communication between the main CPU (Raspberry Pi), the gyro 
board, motor driver, and the I/O-unit (Arduino) as seen in Figure 17.  
 

 
Figure 17: The communication network of the robot. 



 
21 

 

 

The communication network can consist of a (or even multiple) master device(s) and up to 
1008 slave devices. It requires two-wires which represents two signals; SCL (the clock signal) 
and SDA (the data signal). The master device generates the clock signal. 
 
I2C bus drivers can pull the signal low but not drive it high. A pull up resistor is placed on 
each signal line to restore the signal to high after being asserted to low. 
 
A message is sent in two separate frames; first the address frame (7-bits) where the master 
calls for the slave to which the message is directed and then, one or more data frames (8-
bits), containing the data [21]. Figure 18 shows the structure of these frames. 
 

 
Figure 18: The I2C-message with the address- and data-frame 

 
 

3 The process 

A practical method is applied to the design of the robot. By using off-the-shelf parts and 
open-source hardware and software, information is often easily accessible online. One can 
find useful tips and tricks in the official online forums. One should bear in mind that the 
information provided is not necessarily accurate since these forums are open to anyone to 
contribute. CODESYS [22] and Raspberry Pi [23], as well as Arduino [24] all have well 
moderated forums. 

3.1 Robot design 
The following components are recommended use by The Department of Applied Physics and 
Electronics since they are already in stock at the faculty: 
 

• MD25 - Dual 12Volt 2.8Amp H-Bridge Motor Drive 

• 2x EMG30 – Gear Motor with encoder 

• 2x EMG30 mounting bracket 

• 2x Wheel 100mm 
 
Using these parts as the framework for the design, a 3D model is created using the 3D-CAD 
software SolidWorks (Figure 19).  
 
The components; gyro board, motor driver board, Raspberry Pi, Arduino etc. is attached to 
laser cut 3mm clear PMMA-plates, also known as Plexiglas. The plates are then placed as 
levels on a frame of threaded rods (M5), one in each corner and fixed by nuts, creating the 
chassis of the robot. The hole-pattern of the motor brackets is transferred to the PMMA-
plates so that the motors could be attached directly to the main frame. 
The 3D-model is used to determine the necessary space between the two motors and thereby 
the length of the PMMA-plate (the width of the robot). 
 



 
22 

 

The open solution makes the design flexible since one easily can access the individual 
components and use breadboard jumper wires for coupling. This is an asset for an 
experimental platform where you would like to be able to attach more sensors to conduct 
different kinds of experiments in the future. One of the levels consists of a stick-on 
breadboard, cut to fit the PMMA-plate. 
 
It’s an open design with all the parts accessible. It’s also flexible with adjustable and 
replaceable levels. As an experimental platform both these characteristics are preferable since 
you can easily adjust the robot to the conditions of the experiment you want to perform.  
 

 

 
Figure 19: The first 3D-model of the robot with wheels and motors attached complete with 

an Arduino- and Raspberry Pi-model for scale reference. 

 

3.2 Manufacture and assemble 
The only parts that needs manufacturing is the PMMA-plates. PMMA is suitable for laser 
cutting which can be achieved with sufficient precision and surface finish.  
Due to the simplicity of the design, instead of converting the SolidWorks-file, a sketch of the 
plate is redrawn in Adobe Illustrator in the computer already connected to the laser cutter 
and then loaded to the cutter. A 3mm PMMA-plate is placed in the laser cutter and the speed 
and depth settings are set and the plates are cut out as seen in Figure 20. 
 



 
23 

 

 
Figure 20 : Laser cutting 3mm PMMA-plates 

The boards (Arduino, RPi, and MD25) do all have mounting holes and is attached to the 
PMMA-plates using stick-on spacers, some of which had to be modified (using a crafting 
knife) due to different hole sizes. 
The PMMA plates and motors are then assembled using threaded rods, nuts and washers 
according to Figure 21, and Figure 22 below. The electronics is connected according to the 
circuit diagram in Figure 23. 
 

 
Figure 21: Front view of the robot showing from the top: battery, breadboard (level 

converter and distance sensor), Raspberry Pi, Arduino, MD25 and 12V-5V converter. 

 
 

 



 
24 

 

 
Figure 22: Under view of the robot showing the placement of the motors and IMU board. 

 
Figure 23: Circuit diagram 



 
25 

 

3.3 Startup and configuration of the Raspberry Pi 
Following is the startup and configuration process for the Raspberry Pi. It is described in the 
documentation provided with CODESYS Control for Raspberry Pi SL [10], which is 
downloaded from the CODESYS Store [25].  
A monitor, keyboard and mouse are plugged in to control the RPi after the OS installation.  

3.3.1 Install the OS 
The first thing to do with the Raspberry Pi (RPi) is to install the operating system (OS). The 
recommended operation system to use with CODESYS is Raspbian which can be installed 
either directly on the RPi or by using the installer NOOBS.  
Using NOOBS, the OS is booted on the SD-card and installed to the RPi using the 
instructions on the Raspberry Pi Foundation website [26]. 

3.3.2 WLAN 
The Raspberry Pi 3 model B has built-in Wi-Fi and is connected to the same Wi-Fi-network 
as the PC.  
 
The IP-address of the RPi is shown by typing “hostname –I” in the terminal and press 
ENTER.  

3.3.3 Enable I2C-communication 
I2C-communication is not enabled by default on the RPi, therefore one must activate I2C 
manually. This is done in the configuration settings accessible by typing “sudo raspi-config” 
in the terminal. 

3.4 Install CODESYS on the PC 
To get first-hand experience of CODESYS, the program is installed on the PC according to the 
instructions in the provided documentation [16]. 
CODESYS is downloaded from the download-section on the CODESYS website [16]. 

3.4.1 Install CODESYS Control for Raspberry Pi package 
In CODESYS, under the Tools menu; “Package manager” is selected. From here the package 
“CODESYS Control for Raspberry PI_3.5.8.0” is installed. 

3.4.2 Install OSCAT Basic package 
From the CODESYS Store, the OSCAT (Open Source Community for Automation 
Technology)-package is downloaded. It contains various mathematical functions from the 
open source community. The package is installed in CODESYS via the Package manager. 

3.4.3 Install CODESYS to the RPi 
The installation of CODESYS on to the RPi is done via Wi-Fi from CODESYS on the PC using 
the following steps [10]. 
 

a. CODESYS is opened on the PC and under the Tools menu; “Update RaspberryPi” is 
selected and the correct version is set by default. 

b. Correct login data is entered; username: pi, password: raspberry, by default. The IP-
address of the RPi is entered  

c. “OK” is selected and a restart of CODESYS is performed. 
 



 
26 

 

3.5 Programming the control system 
The control system design described in section 2.2 is used as the foundation when 
programming the robot. The updated control system design (Figure 24) shows how the 
components described above are used by the software. 

 
Figure 24: The updated control system design. 

The main program is written in the graphical FBD-language with a function blocks 
representing the various devices and functions such as the gyro board, the PID controller and 
the motor driver board. 
  



 
27 

 

3.5.1 MPU9150 gyro board 
This device communicates via I2C and is implemented as follows: 
 

a. Right click “I2C” in the device-tree 
 

 
 
 

b. Click “Add Device”, select “I2C master” and press “Add Device” in the bottom right 
corner. 
 

 
 
 



 
28 

 

c. Now right click “I2C_master (I2C master)”  
 

 
 

d. Click “Add Device”, select “Gyro MPU9150” and press “Add Device” in the bottom 
right corner. 
 

 
 
 



 
29 

 

The gyro function block can now be inserted in the main program: 
 

e. In the device-tree; go to the main program and insert an empty box from the 
“Toolbox”. 
 

 
 

f. Open the Input assistant by pressing the three question marks over the box and click 
the three dots that appear to the right.  

 
g. Expand “IoConfig_Globals” and select “Gyro_MPU9150”. Press “OK” 

 

 
 



 
30 

 

h. Press “ENTER”. The gyro can now be used in the program. 
 

  

3.5.2 Calculate the angle 
To calculate the angle with which the robot is tilted relative to the gravity vector, the function 
atan2() is used. The function is then implemented as a function block (FB) in the main 
program. 
 
 
where the input is two vectors from the accelerometer on the gyro board and the output is the 
robots angle relative to the gravity vector. 
 
The function block (FB) is created by following the procedure below: 
 

a. In the device tree; right click “Application”, navigate to “Add Object” and press 
“POU…”. 
 

 
 



 
31 

 

b. The name of the FB is set to ATAN2, type is set to “Function block” and the 
implementation language is Structured Text (ST). 
 

 
 

  



 
32 

 

c. The input and output variables are chosen and the atan2 function is written as a set of 
if-statements per the atan2-defintion. To avoid NaN- (Not a Number) errors, 
atan2(0,0) is defined as 0. Finally, the angle is converted from radians to degrees. 
 

 
 

  



 
33 

 

d. In the main program, insert an empty box from the “Toolbox” and connect it to the 
Ax-vector on the gyro-function block. 

 
 

e. Use the “Input Assistant” to insert the ATAN2 function block.  
 
 

f. Use the “Input Assistant” to choose the y-input to the ATAN2 (FB). 

  
 

The function block (FB) now produces the unfiltered angle that will be put through the 
Kalman filter and then used as the actual value for the PID controller. 

 

3.5.3 Kalman Filter 
To implement the Kalman filter as a CODESYS function block (FB) the equations described 
in section 2.4 are simplified and the matrixes are broken down so they can be used in the 
code. 
 
The filter is implemented as described by equations 1-8, chapter 2.4. The conditions for this 
application are inserted in the equations and after simplification they can be written as 
Structured Text (ST) in an CODESYS function block (FB) (Figure 25). This process is 



 
34 

 

described on the blog TKJ Electronics [20] where the Kalman-Filter equations are 
transformed into C code. 
  
The input values are: 

a) d_time – the cycle time in seconds, is calculated in the FB. 
b) newRate – the measured rate from the MPU 
c) newAngle – the calculated angle from the ATAN2 FB. 
d) Q_angle – the variance of the measured angle from the ATAN2 FB, this is a constant 

that needs to be trimmed. 
e) Q_bias – the variance of the rate bias, this is a constant that need to be trimmed. 
f) R_measure – measurement noise, this is a constant that needs to be trimmed. 

 
 
Time update (“Predict”) 
 

1) Project the state ahead 
 

[
𝜃

𝜃̇𝑏𝑖𝑎𝑠
]

𝑘

−

=  [
1 −∆𝑡
0 1

] [
𝜃

𝜃̇𝑏𝑖𝑎𝑠
]

𝑘−1

+ [
∆𝑡
0

] 𝜃̇𝑘−1 

(8) 
ST: 

 
 

2) Project the error covariance ahead 

[
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘

−

=  [
1 −∆𝑡
0 1

] [
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘−1
[

1 0
−∆𝑡 1

] + [
𝑄𝜃 0
0 𝑄𝜃̇𝑏𝑖𝑎𝑠

] ∆𝑡 

(9) 
ST: 

 
 

Measurement update (“Correct”) 
1) Compute the Kalman gain 

[
𝐾0

𝐾1
]

𝑘
=  [

𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘

−

[
1
0

] 𝑆𝑘
−1 

(10) 
where the observation covariance S is calculated: 

𝑆𝑘 = [1 0] [
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘

−

[
1
0

] + 𝑅 

 
(11) 

ST: 



 
35 

 

 
 

2) Update estimate with measurement innovation zk 

[
𝜃

𝜃̇𝑏𝑖𝑎𝑠
]

𝑘

= [
𝜃

𝜃̇𝑏𝑖𝑎𝑠
]

𝑘

−

+ [
𝐾0

𝐾1
]

𝑘
𝑦𝑘 

(12) 
 
where the innovation y is calculated: 

𝑦𝑘 = 𝑧𝑘 − [1 0] [
𝜃

𝜃̇𝑏𝑖𝑎𝑠
]

𝑘

−

 

(13) 
 

Here is also the validation gate of the innovation implemented. ST: 

 
 

3) Update the error covariance 

[
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘

= ([
1 0
0 1

] − [
𝐾0

𝐾1
]

𝑘

[1 0]) [
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘

−

 

(14) 
 

ST: 

 
 
The output is the new estimated angle which is used as the actual value by the PID-controller. 



 
36 

 

 
After a datatype conversion from LREAL to REAL the newAngle-input on the Kalman filter is 
connected to the ATAN2 FB and the newRate-input is connected to the GY-output from the 
gyro board, the sign of the newRate value is adjusted by multiplying by -1. 
 

 
Figure 25: The implementation of the Kalman filter FB in the main program 

  



 
37 

 

3.5.4 The PID controller 
The PID controller used in this project is included in standard CODESYS library Util, which 
is added through the Library Manager. The PID controller is implemented as a FB in the 
main program seen in Figure 26. 
 

 
Figure 26: Implementation of the PID FB in the main program 

A variable is assigned to each of the FBs inputs and outputs to make them manipulatable 
online, which is practical during testing and calibration. Table 2 shows the inputs and 
outputs of the PID-controller. 
 

Table 2: The inputs and outputs of the PID-function block 

Input Description 

ACTUAL Actual angle, provided by the gyro board via the Kalman filter  

SET_POINT Desired angle 

KP Proportionality constant (K) 

TN Reset time (Ti) in seconds 

TV Rate time, derivate time (Td) in seconds 

Y_MANUAL Y is set to this value if MANUAL = TRUE (128=stop) 

Y_OFFSET Offset for manipulated value (128 = stop) 

Y_MIN Minimum value for the manipulated value = full speed backward (0) 

Y_MAX Maximum value for the manipulated value = full speed forwards (255) 

MANUAL If TRUE, Y is not influenced by controller 

RESET If TRUE, Y = Y_OFFSET and the integral part is reset  

Output  

Y Manipulated value, the speed output sent to the MD25 



 
38 

 

LIMITS_ACTIVE Optional set value in case Y would exceed Y_MIN or Y_MAX 

OVERFLOW Indicate an overflow in the integral part (FALSE/TRUE) 

 

3.5.5 MD25 motor driver board 
 
The MD25 motor driver board is connected to the Raspberry Pi via I2C, and implemented in 
CODESYS in the same way as the MPU9150-gyro board; as an I2C -device available in the 
device list.  
 
To support a device this way CODESYS uses a device description file (.devdesc.xml)  and a 
library file (.library) containing the function block (FB) according to which the functionality 
of the device is programmed. 
 
Since this device is not available as a pre-installed device in CODESYS, a custom library and 
device description file is created. This procedure is described in the provided documentation 
[10] and is implemented as follows. 
 
First a device description file is created using an existing device description file as the 
template: 
 

a. An existing I2C device description file (AdafruitPWM.devdesc) is copied and pasted, 
the new file is renamed MD25. 

b. The file is opened in a text editor and id is changed. 

 
 

c. The device information is changed 

 
 

d. The vendor name and version of the related library is changed 

 
 

e. The name of the FB in the library is entered and the file is saved and closed 

 
 
The device description file is then installed in CODESYS via Tools -> Device Repository… and 
can now be inserted as a I2C -device. 
 
The library file is created per the method below, using an existing library as template: 



 
39 

 

a) In CODESYS, create a new project and select CODESYS library file named MD25 (as 
specified in the device description file). 

 
 

b) Create a new FB extending I2C, also named MD25 (as specified in the device 
description file). 

 
 

c) In the FB, the I2C -adress of the MD25 is specified (0x58) and a state machine is 
implemented. 

 
  



 
40 

 

d) To read the input values from the MD25 a method is created called AfterReadInputs 
where the I2C-communication to the MD25s registers are specified.  

 
 
The MD25 has 17 registers specified in the MD25-I2C-documentation [12], of which 
16 are readable; Speed1-value, Speed2/Turn-value, the individual encoder bytes 
(which are used to calculate the encoder value), the remaining voltage of the battery, 
the electric current through the motors, the software revision number, acceleration 
rate and the mode of operation activated. 
 

 
  



 
41 

 

e) To write output values to the MD25 a method called BeforeWriteOutputs is created 
in a similar manner. The MD25 has 5 writeable registers; Speed1-value, 
Speed2/Turn-value, acceleration rate, mode of operation and a command register.  
 

 
 
The library is then saved and installed in CODESYS via the library repository. 

 
  



 
42 

 

The MD25 is implemented in the main project as an I2C-device and the FB is implemented in 
the main program (Figure 27). 
 

 
Figure 27: Implementation of the MD25 FB in the main program 

3.6 Visualizations 
The CODESYS visualizations-tool is used to create the GUI (Graphical User Interface) from 
where the robot is controlled and to create trace plot of the different processes. As an in-built 
function in CODESYS this visualization can be accessed through a web browser by any device 
connected to the same local network as the Raspberry Pi. In this way, for example a 
smartphone can be used as a remote control to steer the robot via Wi-Fi. 

3.6.1 GUI 
The GUI, shown in Figure 28 is equipped with buttons, lamps and switches to remotely 
control the robot. The reset function of the Kalman Filter and the PID controller is accessed 
through the GUI as well as adjustable PID parameters for online-tuning of the controller. 
Also, buttons for acceleration, braking and steering is laid out but not implemented.  



 
43 

 

 
Figure 28: Screenshot of the GUI, from left to right; above the calibration control for the 

PID, a green lamp shows when the gyro is calibrated, the set point angle for when the robot 
is balanced is calibrated manually, below; the buttons for steering and acceleration (not 
implemented), a switch for stopping the robot and reset the PID (red lamp shows when 

active), and a switch for resetting the Kalman Filter in case it loses its tracking (red lamp 
shows when active).   

3.6.2 Trace Plots 
A separate visualization (Figure 29) is created for plotting the Kalman Filter- and PID-
performance to be used for tuning. 
 

 
Figure 29: Trace plot visualization 

  



 
44 

 

 

4 Experiments, results and analysis 

4.1 Kalman Filter tuning and performance 
The Kalman Filter is tuned by measuring the angle, first in a static state, and then during a 
balance test. To determine the variables Q_angle, Q_bias and R_measure, three trace-plots 
are set up the visualization tool in CODESYS showing angle (filtered versus raw), rate 
(filtered versus raw) and innovation versus innovation covariance. 
The variables Q_angle, and Q_bias is determined during the static test and R_measure is 
determined during the balance test.  
 

4.1.1 Static measurements 
The static measurements show the raw data from the accelerometer; represented as the angle 
as it’s calculated in the ATAN2 FB, and gyro; represented as the rate, compared with the 
filtered values from the Kalman filter while the robot is standing still on the desk with the 
wheels removed. 
 
The process noise, Q_angle, is determined by comparing the filtered and the raw angle. The 
filtered angle should follow the approximated mean of the raw angle as seen in Figure 30. 
 
Q_angle is set to 0,001 
 
 

 
Figure 30: Observed angle and estimated angle plotted with respect to time.  

Angle (deg) 

Time (s) 



 
45 

 

Gyro drift is modelled as integrated white noise, a Brownian walk (Figure 31).  The noise for 
the bias walk is set to Q_bias, 0,03.  
 

 

 
Red = F i l tered rate,  B lue =  Raw rate  

Figure 31: Gyro drift is modelled as integrated white noise. 

 
A balance test is performed to determine the value for the variable R_measure by analyzing 
the innovation-plot seen in Figure 32, comparing the innovation, y, with the innovation 

validation gate, which is:  ± 3,0 × √𝑆. Validation gate width is ± three standard deviations 
(99,7%) of the innovation should be when the filter is tuned.  
 

 
Figure 32: Validation gate is used to tune the filter so that the innovation spikes are filtered 

out. 

 

Since measured values causing the innovation to go outside of this area are filtered out, 
R_measure is initially set to a large value (R_measure=5). Otherwise the Kalman filter will 
lose tracking. 
 
The tuning is then performed parallel to the tuning of the PID controller 
As the robots’ ability to hold its balance increases, R_measure can be reduced.  
 
When tuned, R_measure is set to 0,8. 

4.2 PID-tuning and performance 
To tune the PID controller the Ziegler-Nichols method [27] is used to get a first 
approximation of the K-, TI-, and TD-values. These values are then adjusted based on the 
balancing behavior of the robot. 
 

Rate (deg/s) 

Time (s) 



 
46 

 

The working order is as follows: 
a) Initially, K =5, TI = 1000000000 and TD =0. 
b) K is increased until the robot starts to oscillate about the balance position, this 

happened at K0 (K-zero) = 9,5.  
c) The angle-plot is used to approximate the period time, T0 (T-zero) for the 

oscillations. Five different measurements are used to calculate T0 and the mean of 
these values are calculated in an excel-spreadsheet. The period time is approximated 
as = 0,43 s. 

d) The values K0 = 9,5 and T0 = 0,43 are then used in Table 3 to determine the 
controller parameters. 

 
Table 3: PID controller parameters according to the Ziegler-Nichols method 

K0 = 9,5 
T0 = 0,43 

Parameters 

 K TI TD 

PID controller 0,6 K0 0,5 T0 0,125 T0 

Tuned 
parameters 

5,7 0,22 0,054 

 
The PID parameters according to the Ziegler-Nichols method are: K =5,7, TI = 0,22 and TD 
=0,054. 
 
This is a first approximation and a fine tuning of the PID controller by trial and error is 
performed which results in the following PID-parameters: K =5,7, TI = 0,1 and TD =0,03. 
 

4.3 Motor and MD25 performance 
An irregular twitching in the motors where noticed even though the input signal is 128, 
meaning the motors are set to stop. 
The wheels where removed and the input is set to 128 (stop). The encoder values on both 
motors where plotted as shown in Figure 33 and Figure 34. 
 

 
Figure 33: Encoder readings of twitching motors 



 
47 

 

 
Figure 34: Encoder readings of twitching motors 

 

4.4 Specifications and test scenario analysis 
The specifications from section 1.1.1 and status (met/not met) at the end of the project: 
 

1. The robot should be equipped with a Raspberry Pi with CODESYS (high priority) met 
2. The robot should have TWO wheels (high priority) met 
3. Controller parameters should be controlled via web-interface (high priority) met  
4. The robot should be equipped with a gyro breakout board met 
5. The robot should be able to keep its balance like an inverted pendulum met 
6. The robot should be able to avoid collision by using a distance sensor not met 
7. The robot should be controlled using a smartphone (web-interface) met 
8. The robot should have on-board power supply in the form of batteries. The size of the 

batteries should be based on the power usage of the electronics. met 
9. Testing activities should be noted and filmed met 
10. Web-interface should present total travelled distance (low priority) not met 

 
Result: 8/10 specifications are met. 
 
The test scenarios from section 1.1.1 and status (success/fail/not completed) at the end of 
the project: 
 

1. The robot is balancing on a flat surface and a tilted surface (30°). partially 
completed 

2. The robot is wireless controlled. success 
3. The robot brakes automatically for obstacles. not completed 
4. The robot brakes automatically and drives around obstacles. not completed 

 
Result: 1/4 test scenarios are completed. 

4.5 Test scenario 1 
The robot is balancing on a flat surface and a tilted surface (30°).  



 
48 

 

Only the first part of this test was performed where the robot stayed balanced on a flat 
surface, shown in Figure 35.  
 

 
Figure 35: Robot balancing on a flat surface 

  



 
49 

 

4.5.1 Plots 
Plots showing the performance of the Kalman Filter and PID controller during test scenario 1. 
Figure 36 shows the innovation plot of the Kalman Filter. Observations outside the area 
between the red lines are not accepted.  Figure 37 shows the performance of the Kalman 
Filter and Figure 38 shows the performance of the PID controller. 
 

 
Figure 36: Kalman Filter innovation plot 

 
Figure 37: Kalman Filter performance; blue line represents the raw angle, calculated 

through atan2, and the red line represents the estimated angle produced by the Kalman 
Filter   



 
50 

 

 
Figure 38: PID Performance; blue line represents the actual value (angle) and the red line 

represents the control signal (to MD25). 

5 Discussions and reflections 

Robotics is a multi-disciplinary field of research and requires knowledge in electronics, 
mechanical engineering, control theory, etc. To be able to build this robot a lot of time was 
spent on learning as much as possible on these subjects, from basic electronics to 
programming and control theory. Due to time shortage, not all of the topics could be studied 
in as much detail. For example; when deciding on the method of PID-tuning, a model-based 
method was considered but it was decided that, at least for the early tests, the Ziegler-
Nichols-method should be used since it doesn’t depend on one knowing the transfer function 
of the system. 
 
During the testing phase the robot fell over several times which eventually damaged the 12V-
5V-converter so it had to be replaced. A crash guard was successfully made from a plastic 
foam sitting pad to prevent this from happening again. 
Also, the motors had to be repaired as the cables fell of the electronics board on the back of 
the motors and had to be soldered back on.  
 
Making a balancing robot requires a robust control system and this was a lot more difficult to 
achieve than initially imagined. It was first as the Kalman Filter was implemented and tuned 
correctly as the gyro signal was clear enough to make a good input for the PID-controller. 
 
Tuning the Kalman Filter requires a deep understanding on its functionality and it wasn’t 
until the end of the project that it was realized that problems with the PID-tuning was due to 
spikes in the gyro signal and the Kalman Filter wasn’t properly tuned to handle non-Gaussian 
distributed noise. The validation gate on the innovation was implemented to filter out the 
spikes but the filter lost track of the gyro signal when the angle changes where too fast. It 
took some additional tuning of the Kalman Filter to make it follow the track of the gyro at fast 
angle changes. 
 



 
51 

 

Learning CODESYS was a great experience and thanks to the provided CODESYS 
documentation, First Steps [10], it was easy to install and run the first programs in CODESYS 
on the Raspberry Pi to get familiar with the CODESYS environment.  
 
In the future, we can expect robotics and automation to take a growing part in the industrial 
development. This development is often described as the fourth industrial revolution or 
Industry 4.0, where the individual sections in a factory is connected to create a “smart 
factory”. Therefore, engineers designing the technology of the future must have a good 
understanding of automation and autonomous systems.  
There is a potential that engineering students building a robot as described in this project, 
using a system like CODESYS to control it, would learn a lot about robotics and automation 
in an environment used in industrial applications.  
 

6 Conclusions 

During this project, a self-balancing, robot have been designed and built. 
A control system design where made and implemented in CODESYS.  
 
The Kalman Filter was successfully implemented and enabled a good reading of the angle 
from the gyro board. Also, the PID controller was successfully implemented. 
 
The robot can hold its balance on a flat surface and stay balanced. 
 
The main sources of error are the Kalman Filter-, and PID-tuning. The motors’ irregularly 
twitching isn’t an obvious source of error compared to these. 
 
The main time of the testing phase where used to make the robot balance on a flat surface. 
This was very time consuming and therefore were all the testing goals not met before the 
project run out of time.  
 
The Arduino I/O was tested in CODESYS and gave a good reading of the distance sensor. 
This never came into practice in the main program because of errors in the Arduino code 
resulting in failing I2C communication. This problem wasn’t investigated any further due to 
the low priority of the automatic braking function. 
 

6.1 Future work 
This work can be improved by adding a function for motion control, driving back and forth by 
manipulating the angle target value and left and right by manipulating the speed signal at 
each motor.  
Alternatively, one could use the angle in the y-x-plane measured by the gyro board as the 
actual value and using a secondary controller to regulate the speed difference between the 
right and left motor. 
 
To improve the understanding of PLC-systems it would be desired to get the Arduino to work 
as an I/O-unit, either connected via I2C as in this project or through MODBUS [28].   
  
Another suggestion is that one could calculate the transfer function for the system, for 
example by calculating the differential equations describing the dynamic of the mechanical 
system. This could then be used to tune the PID-controller. 
 
One can also test another type of controller, for example Fuzzy, which has been proven to be 
an effective way of controlling self-balancing robots [29]. 



 
52 

 

6.2 Reflection on work 
A significant amount of the time spent during the testing phase was used trimming the PID 
controller using improperly filtered values from the gyro board without realizing the Kalman 
filter was not properly tuned, letting through non-Gaussian distributed spikes. 
 
In the effort of getting rid of the spikes a median filter was constructed and tested with some 
improvement but not satisfying.  
  
 This was very frustrating and time consuming. To avoid this during troubleshooting, one 
should systematically examine the output data of every process, starting with the sensors, 
until one find the cause of the problem. 
  



 
53 

 

References 

 

[1]  Umeå University, "Umeå University in Figures," 25 02 2016. [Online]. Available: 
http://www.umu.se/english/about-umu/facts/figures. [Accessed 04 08 2016]. 

[2]  Umeå University, "Umeå University," 23 10 2013. [Online]. Available: 
http://www.tfe.umu.se/english/. [Accessed 04 08 2016]. 

[3]  Z. W. Wu Junfeng, "Research on Control Method of Two-wheeled Self-balancing 
Robot," in 2011 Fourth International Conference on Intelligent Computation 
Technology and Automation, Shenzhen, Guangdong, 2011.  

[4]  Segway Inc., ”Segway,” 2017. [Online]. Available: http://se-en.segway.com/. [Använd 
04 02 2017]. 

[5]  Gawrisch, "Segway - English Wikipedia," 22 February 2009. [Online]. Available: 
https://commons.wikimedia.org/w/index.php?curid=6015960. [Accessed 4 February 
2017]. 

[6]  Mixabest, "Wikimedia Commons," 7 March 2008. [Online]. Available: 
https://commons.wikimedia.org/wiki/File%3AMITSIBISHI_PLC_Panel.jpg. 
[Accessed 4 February 2017]. 

[7]  Mixabest, "PLC - English Wikipedia," 21 June 2010. [Online]. Available: 
https://commons.wikimedia.org/w/index.php?curid=10696883. [Accessed 4 February 
2017]. 

[8]  D. H. Hanssen, "About PLCs," in PROGRAMMABLE LOGIC CONTROLLERS : a 
practical approach to IEC 61131-3 using CODESYS, Singapore, WILEY, 2015, pp. 3-13. 

[9]  R. P. Foundation, ”Documentation: Hardware: Raspberry Pi,” 2016. [Online]. 
Available: 
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md. 
[Använd 25 12 2016]. 

[10]  3S-Smart Software Solutions GmbH, Raspberry Pi with Standard Codesys V3 : First 
Steps, 2015.  

[11]  Arduino, ”Arduino/Genuino UNO: Arduino & Genuino Products: Arduino,” 2016. 
[Online]. Available: https://www.arduino.cc/en/Main/ArduinoBoardUno. [Avaialable 
26 12 2016]. 

[12]  R. Electronics, "MD25 Technical Documentation: Robot Electronics," 2016. [Online]. 
Available: https://www.robot-electronics.co.uk/htm/md25tech.htm. [Accessed 26 12 
2016]. 

[13]  InvenSense Inc., MPU-9150 Product Specification Revision 4.0, Sunnyvale, CA, USA, 
2012.  

[14]  Sparkfun, "Using the logic level converter: Tutorials: Sparkfun," 2016. [Online]. 
Available: https://learn.sparkfun.com/tutorials/using-the-logic-level-converter. 
[Accessed 27 12 2016]. 

[15]  Elektrokit, ”Avståndssensor IR 10-80cm GP2Y0A21YK: Elektrokit,” 2016. [Online]. 
Available: http://www.electrokit.com/avstandssensor-ir-1080cm-
gp2y0a21yk.48727?gclid=Cj0KEQiAv4jDBRCC1IvzqqDnkYYBEiQA89utonrtw8csKy0F
1rpkrh4VqMBoOsTwxkEiYNzRh27Kj6IaAneP8P8HAQ. [Available 27 12 2016]. 

[16]  3S-Smart Software Solutions, ”Download: CODESYS,” 2016. [Online]. Available: 
https://www.codesys.com/download.html. [Available 05 08 2016]. 

[17]  D. H. Hanssen, "CODESYS 2.3," in PROGRAMMABLE LOGIC CONTROLLERS: a 
practical approach to IEC 61131-3 using CODESYS, Singapore, WILEY, 2015, pp. 353-
354. 



 
54 

 

[18]  W. G. a. B. G, An Introduction to the Kalman Filter, Chapel Hill: Department of 
Computer Science, University of North Carolina at Chapel Hill, 2006.  

[19]  C. Sundin and F. Thorstensson, "Autonomus balancing robot; Design and 
construction of a balancing robot," CHALMERS UNIVERSITY OF TECHNOLOGY, 
Göteborg, Sweden, 2012. 

[20]  K. S. Lauszus, "A practical approach to Kalman filter and how to implement it:TKJ 
Electronics," 10 September 2012. [Online]. Available: 
http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-
how-to-implement-it/comment-page-1/#comment-57783. [Accessed 18 12 2016]. 

[21]  Sparkfun, "I2C: Tutorials: Sparkfun," 2016. [Online]. Available: 
https://learn.sparkfun.com/tutorials/i2c. [Accessed 03 01 2017]. 

[22]  3S-Smart Software Solutions GmbH, "Forum: CODESYS," [Online]. Available: 
http://forum.codesys.com/. [Accessed 05 08 2016]. 

[23]  Raspberry Pi Foundation, "Forum: Raspberry Pi," [Online]. Available: 
https://www.raspberrypi.org/forums/. [Accessed 05 08 2016]. 

[24]  Arduino, "Forum: Arduino," [Online]. Available: https://forum.arduino.cc/. [Accessed 
05 08 2016]. 

[25]  3S-Smart Software Solutions GmbH, ”CODESYS Control for Raspberry Pi SL : 
CODESYS Store,” 2016. [Online]. Available: http://store.codesys.com/codesys-
control-for-raspberry-pi-sl.html. [Available 05 08 2016]. 

[26]  Raspberry Pi Foundation, ”Download: Raspberry Pi,” [Online]. Available: 
https://www.raspberrypi.org/downloads/. [Available 05 08 2016]. 

[27]  B. Thomas, "Tumregelmetoder: Dimensionering av analoga reglersystem," in 
Modern Reglerteknik, Stockholm, Liber AB, 2008, pp. 190-192. 

[28]  FleaPLC, "Arduino as Raspberry PI's remote IO (Codesys): fleaplc.it," 16 August 2014. 
[Online]. Available: http://www.fleaplc.it/en/tutorials/33-arduino-as-raspberry-pi-s-
remote-io-codesys. [Accessed 09 01 2016]. 

[29]  J. O. ,. a. K. Y. C. M. I. H. Nour, "Fuzzy Logic Control vs. Conventional PID Control of 
an Inverted Pendulum Robot," in International Conference on Intelligent and 
Advanced Systems 2007, Semenyih, Malaysia, 2007.  

 
 

  



 
55 

 

7 Appendix 

  



 
56 

 

7.1 PROGRAM CODE 
 

7.1.1 Main program 
The IMU outputs the coordinates of the angle-vector, the atan2 function block calculates the 
angle relative to the gravity vector. A Kalman Filter then estimates the true angle, using the 
angle from the atan2-function block and the angle-velocity from the IMU. The true angle is 
then used as the actual value by the PID-controller which calculates the control signal, used 
as input to the motors through the MD25-motor driver. If the robot falls over (angle > 40 
degrees or angle < -40 degrees), the motor stops and the PID-controller is reset. 
 
//VARIABLES: 

PROGRAM SELF_BALANCING_ROBOT_PRG 

VAR 

 //Gyro MPU9150 

 aX: LREAL; 

 aY: LREAL; 

 aZ: LREAL; 

 gX: LREAL; 

 gY: LREAL; 

 gZ: LREAL; 

 Temp: LREAL; 

  

 //ATAN2 

 ATAN2_0: ATAN2; 

  

 //Kalman filter 

 KALMAN_FILTER_0: KALMAN_FILTER; 

  

 //PID 

 Balance: PID; 

  

 K: REAL := 5.7;      

 //Proportionality constant 

 Ti: REAL := 0.1;     

 //reset time (s) 

 Td: REAL := 0.03;    

 //rate time, derivate time (s) 

  

 set_point_balance: REAL := -0.6; // calibrated angle in 

degrees 

 y_manual: REAL := 128; //stop 

 y_offset: REAL := 128; 

 yMin: REAL := 0; 

 yMax: REAL := 255;  

 manual: BOOL := FALSE; //TRUE = stop 

 reset: BOOL := TRUE; //TRUE = stop and reset int-value

  

 lim_active: BOOL; 

 overflow: BOOL; 

 

 //MD25 Motor Drive 

 speed1: INT; 

 speed2: INT; 

 position1: INT; 



 
57 

 

 position2: INT; 

 batteryV: LREAL; 

 current_motor1: LREAL; 

 current_motor2: LREAL; 

 AccRate: USINT := 10; 

 op_mode: USINT := 0; 

 comm: USINT := 49; 

  

  

 Gyro_calibrated: BOOL; 

 Kalman_reset: BOOL; 

END_VAR 

  



 
58 

 

 
//FUNCTION: 
 

 
 
  



 
59 

 

7.1.2 ATAN2 Function block 
The function block ATAN2 uses the vector, defined by its coordinate, x,y, as input to calculate 
the vectors angle from a plane. 
 
Several IF- statements determines the sign of the coordinate and thereby the quadrant of the 
vector. Angle is defined as zero if both x and y is equal to zero. 
 
//VARIABLES: 

 

FUNCTION_BLOCK ATAN2 //atan2 (y/x) 

VAR_INPUT 

 y: LREAL; 

 x: LREAL; 

END_VAR 

VAR_OUTPUT 

 angle: LREAL; 

END_VAR 

 

//FUNCTION: 

 

IF x > 0 THEN; 

 angle := ATAN(y/x); 

ELSIF x < 0 THEN 

 IF Y >=0 THEN 

  angle := ATAN(y/x)+3.14; 

 ELSE 

  angle := ATAN(y/x)-3.14;   

 END_IF  

ELSIF y > 0 THEN; 

 angle := 3.14/2; 

ELSIF y < 0 THEN; 

 angle := -1*(3.14/2); 

ELSE 

 angle := 0; //if x=0 and y=0, angle = 0 

END_IF 

 

//angle := angle * (180/3.14); //Convert radians to degrees  



 
60 

 

7.1.3 Kalman Filter Function block 
 
 

//VARIABLES: 

FUNCTION_BLOCK KALMAN_FILTER // Discrete Kalman filter 

VAR_INPUT 

 newAngle: REAL; 

 newRate: REAL; 

 RESET: BOOL; 

END_VAR 

VAR_OUTPUT 

 angle: REAL; 

  

END_VAR 

VAR 

 uiLoop: UINT; 

 Q_angle: REAL := 0.001; //initial test = 0,001 

 Q_bias: REAL := 0.003; //initial test = 0,003 

 R_measure: REAL := 1;  //initial test =0,03 

 d_time: REAL; 

 T1: ULINT; 

 T2: ULINT; 

  

 bias: REAL; 

  

 P_00: REAL; 

 P_01: REAL; 

 P_10: REAL; 

 P_11: REAL; 

  

 Sk: REAL; 

  

 K_0: REAL; 

 K_1: REAL; 

  

 rate: REAL; 

 y: REAL; 

 P00_temp: REAL; 

 P01_temp: REAL; 

  

 //additional variables 

 RQ_lim: REAL; 

 RQ_lim_negative: REAL; 

 timeplot: REAL; 

  

 sigma: REAL := 3; 

 K_prev: REAL; 

 

END_VAR 

 

//FUNCTION: 

T1 := T2; 

SysTimeRtcHighResGet (pTimeStamp := T2); 

 d_time := ULINT_TO_REAL (T2-T1)/1000; //Determines the 

cycle time in seconds 

 



 
61 

 

uiLoop:=uiLoop+1; 

IF (uiLoop>1) THEN //Set delay for testing 

 

// Time Update ("Predict") 

// 1) Project the state ahead  

rate := newRate - bias; 

angle := angle + d_time * rate; 

 

// 2) Project the error covariance ahead 

P_00 := P_00 + d_time * (d_time * P_11 - P_01 - P_10 + Q_angle); 

P_01 := P_01 - d_time * P_11; 

P_10 := P_10 - d_time * P_11; 

P_11 := P_11 + Q_bias * d_time; 

 

// Measurement Update ("Correct") 

// 1) Compute the Kalman gain K where covariance prediction Sk: 

Sk := P_00 + R_measure; // Estimate error 

 

// Kalman gain 

K_0 := P_00 / Sk; 

K_1 := P_10 / Sk; 

 

// 2) Update estimate with measurement zk (newAngle) where the 

innovation y: 

 

y := newAngle - angle; 

 

//Reject measured values outside the innovation covariance limits 

(3sigma = 99.7% of mean) 

 

RQ_lim := sigma * SQRT(Sk); 

RQ_lim_negative := -1 * RQ_lim; 

 

IF y > RQ_lim OR y < RQ_lim_negative THEN  

 K_0 := 0; 

 K_1 := 0; 

   

ELSE 

 

//Update estimate 

angle := angle + K_0 * y; 

bias := bias + K_1 * y; 

 

END_IF 

 

// Eneable reset if the Kalman filter lose tracking 

IF RESET = TRUE THEN 

 sigma := 100; 

ELSE 

 sigma := 3; 

END_IF 

 

// 3) Update the error covariance 

P00_temp := P_00; 

P01_temp := P_01; 

P_00 := P_00 - K_0 * P00_temp; 



 
62 

 

P_01 := P_01 - K_0 * P01_temp; 

P_10 := P_10 - K_1 * P00_temp; 

P_11 := P_11 - K_1 * P01_temp; 

 

//plotting variables 

timeplot := d_time*1000; 

 

END_IF; 

 
  



 
63 

 

7.1.4 MD25 Function block 
 

 

//VARIABLES: 

//This is a library for the MD25 - Dual 12Volt 2.8Amp H Bridge Motor 

Drive 

//For further details, see: http://www.robot-

electronics.co.uk/htm/md25i2c.htm 

//Speed values are interpreted as USINT (speed/turn value 0-255) 

meaning only mode 0 and 2 is avalable 

 

FUNCTION_BLOCK MD25 EXTENDS i2c 

VAR_INPUT  

 speedOne: USINT; //send speed to first motor (mode 0), 

send speed to both motors (mode 2) 

 speedTwo: USINT; //send speed to second motor (mode 0), 

send turn value (mode 2) 

 AccRate: USINT;  //Acceleration rate 1-10 

 op_mode: USINT;  //Mode of operation (0 or 2) 

 comm: USINT;  //Command register to reset 

encoders and speed regulation  

  

  //comm = 32  - Reset encoder registers to zero 

 //comm = 48  - Disables automatic speed regulation 

 //comm = 49  - Enables automatic speed regulation 

(default) 

 //comm = 50  - Disables 2 second timeout 

of motors (version 2 onwards only) 

 //comm = 51  - Enables 2 second timeout of 

motors when no I2C comms (default) (version 2 onwards only) 

 //comm = 160  - 1st in sequence to change I2C address 

 //comm = 170 - 2nd in sequence to change I2C address 

 //comm = 165 - 3rd in sequence to change I2C address

  

  

END_VAR 

 

VAR_OUTPUT  

 speedmotorONE: INT;  //Read speed of first motor 

 speedmotorTWO: INT;  //Read speed of second motor 

 positionOne: INT;    //Read position value encoder 

1 

 positionTwo: INT;  //Read position value encoder 

2 

 BatteryV: LREAL;  //Read battery voltage (value 

118 = 11.8V) 

 currentOne: LREAL;  //Read current through motor 

1 

 currentTwo: LREAL;  //Read current through motor 

2 

  

END_VAR 

 

//FUNCTION: 

 

SUPER^(); 



 
64 

 

 

CASE _iState OF 

0: 

 IF usiAddress = 0 THEN 

  usiAddress := 16#58; //i2c-adress 0x58 

 END_IF 

 

 IF init() THEN 

  _iState := 10; 

 END_IF   

END_CASE 

 

//AfterReadInput: 

 

//VARIABLES: 

METHOD AfterReadInputs : INT 

VAR_INPUT 

END_VAR 

VAR 

 r1a: INT; 

 r1b: INT; 

 r1c: INT; 

 r1d: INT; 

 r2a: INT; 

 r2b: INT; 

 r2c: INT; 

 r2d: INT; 

END_VAR 

 

 

//FUNCTION: 

SUPER^.AfterReadInputs(); 

 

IF _iState = 10 THEN 

 speedmotorONE := read8(16#00); //Read speed of first motor 

 speedmotorTWO := read8(16#01); //Read speed of second 

motor 

 

 //Calculate encoder value 

 r1a := read8(16#02); 

 r1b := read8(16#03); 

 r1c := read8(16#04); 

 r1d := read8(16#05); 

 r2a := read8(16#06); 

 r2b := read8(16#07); 

 r2c := read8(16#08); 

 r2d := read8(16#09); 

  

 positionOne := 

(r1a*256*256*256)+(r1b*256*256)+(r1c*256)+r1d; //Read position value 

encoder 1 

 positionTwo := 

(r2a*256*256*256)+(r2b*256*256)+(r2c*256)+r2d; //Read position value 

encoder 2 

  



 
65 

 

 BatteryV := read8(16#0A); //Read battery voltage (value 

118 = 11.8V) 

  

 currentOne :=read8(16#0B); //Read current through motor 1 

 currentTwo :=read8(16#0C); //Read current through motor 2 

END_IF 

 

//BerforeWriteOutput: 

 

//VARIABLES: 

METHOD BeforeWriteOutputs : INT 

VAR 

END_VAR 

 

 

//FUNCTION: 

SUPER^.BeforeWriteOutputs(); 

 

IF _iState = 10 THEN 

 write8(16#00, speedOne); //speed motor 1 

 write8(16#01, speedTwo); //speed motor 2/ turn value 

  write8(16#0E, AccRate); //Acceleration rate 

 write8(16#0F, op_mode); //Mode of operation 

 write8(16#10, comm);  //Command register  

END_IF 

  



 
66 

 

7.1.5 MD25 Device description file 
 
<?xml version="1.0" encoding="utf-8"?> 

<!--created with CoDeSys 3.0 (http://www.3s-software.com) by 

DeviceDescriptionBuilder (3S-Smart Software Solutions GmbH)--> 

<DeviceDescription xmlns="http://www.3s-

software.com/schemas/DeviceDescription-1.0.xsd" 

xmlns:ts="http://www.3s-software.com/schemas/TargetSettings-0.1.xsd" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

  <Types namespace="local"> 

  </Types> 

  <Strings namespace="local"> 

    <Language lang="en"> 

    </Language> 

  </Strings> 

<!--  <Files namespace="local"> 

    <Language lang="en"> 

      <File fileref="local" identifier="JoystickIcon"> 

        <LocalFile>Joystick.ico</LocalFile> 

      </File> 

    </Language> 

  </Files>--> 

  <Device hideInCatalogue="false"> 

    <DeviceIdentification> 

      <Type>500</Type> 

      <Id>FFFF 1111</Id> 

      <Version>1.0.0.0</Version> 

    </DeviceIdentification> 

    <DeviceInfo> 

      <Name name="local:ModelName">MD25</Name> 

      <Description name="local:DeviceDescription">MD25</Description> 

      <Vendor name="local:VendorName">Emil Eriksson</Vendor> 

      <OrderNumber>-</OrderNumber> 

<!--      <Icon name="local:JoystickIcon">Joystick.ico</Icon> --> 

    </DeviceInfo> 

    <Connector moduleType="500" interface="Raspberry.I2C" 

role="child" explicit="false" connectorId="1" hostpath="-1"> 

      <InterfaceName name="local:PCI">I²C-Bus</InterfaceName> 

      <Slot count="1" allowEmpty="false"> 

      </Slot> 

      <DriverInfo needsBusCycle="false"> 

        <RequiredLib libname="MD25" vendor="Emil Eriksson" 

version="1.0.0.0" identifier="deviceLib"> 

          <FBInstance basename="$(DeviceName)" fbname="MD25"> 

            <Initialize methodName="Initialize" /> 

            <CyclicCall methodname="BeforeWriteOutputs" 

task="#buscycletask" whentocall="beforeWriteOutputs" /> 

            <CyclicCall methodname="AfterReadInputs" 

task="#buscycletask" whentocall="afterReadInputs" /> 

          </FBInstance> 

        </RequiredLib> 

      </DriverInfo> 

      <HostParameterSet> 



 
67 

 

        <Parameter ParameterId="1" type="std:INT"> 

          <Attributes channel="none" download="true" 

functional="false" onlineaccess="read" /> 

          <Default>0</Default> 

          <Name name="local:Id393218">I²C address</Name> 

          <Description name="local:Id393218.Desc">Address of the 

device</Description> 

        </Parameter> 

<!--        <Parameter ParameterId="2" type="std:UINT"> 

          <Attributes channel="none" download="true" 

functional="false" onlineaccess="read" /> 

          <Default>50</Default> 

          <Name name="local:Id393218">Frequency [Hz]</Name> 

          <Description name="local:Id393218.Desc">Number of periods 

(HIGH-LOW-cycles) per second</Description> 

        </Parameter>--> 

<!--        <Parameter ParameterId="3" type="std:USINT"> 

          <Attributes channel="none" download="true" 

functional="false" onlineaccess="read" /> 

          <Default>4</Default> 

          <Name name="local:Id393218">Number of active 

outputs</Name> 

          <Description name="local:Id393218.Desc">Number of outputs 

that are used and need to be controlled</Description> 

        </Parameter>--> 

      </HostParameterSet> 

    </Connector> 

 <!-- <Connector connectorId="1000" explicit="false" hostpath="1" 

interface="Common.SoftMotion.Servo" moduleType="1024" role="parent" 

initialStatusFlag="241"> 

      <Var max="16"/> 

      <HostParameterSet /> 

    </Connector>--> 

  </Device> 

</DeviceDescription>  



 
68 

 

7.2 MACHINE DRAWING OF PMMA-PLATE 

 



 150 

 8
0 

 9  132  9 

 1
0 

 6
0 

 1
0 

 
5,5 (x4) 

 Godtycklig radie (x4) 

 3 

Det. 
nr Ant Benämning Material Dimension Anm Vikt
1 1 Plexi, 3mm PMMA 150x80 0.04

Fästplatta
WEIGHT: 

PMMA
A3

SHEET 1 OF 1SCALE:1:1

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND 
BREAK SHARP 
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
   LINEAR:
   ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN


	Sheet1
	Drawing View1
	Drawing View2


