[r13]: / trunk / d-logg / d-logg / DLogg / svnobj  Maximize  Restore  History

Download this file

89 lines (85 with data), 12.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
FUNCTION_BLOCK DLogg
VAR_INPUT
	udtInput : IoDrvInput;
	udtConfig : IoDrvConfig;
END_VAR
VAR_OUTPUT
	udtOutput : IoDrvOutput;
VAR
	stream : SerialStream;
	i : LINT;
	// Temporary variables
	byByte: BYTE;
	nRead: UDINT;
	nWrote: ULINT;
	
	// Stateful variables
	dwState : DWORD;
	// Number of Data Loggers on this one serial port
	udiNumDL : UDINT;
	// sensor data
	audtSensor : ARRAY [0..1] OF UVRSensorData;
	audtSolar1 : ARRAY [0..1] OF UVRSolarData;
	audtSolar2 : ARRAY [0..1] OF UVRSolarData;
	byChecksum : BYTE;
	Delay : TON;
// Execute the FB only every second
// Quicker sampling is not supported by the logger
Delay(IN:=TRUE, PT:=T#1S);
IF NOT(Delay.Q) THEN
	RETURN;
END_IF
Delay(IN:=FALSE);
// Start with the state machine
CASE dwState OF
	0:	stream.Open(1, 115200);
		next();
	// Read number of data loggers
	1: 	nWrote := stream.WriteByte(16#81);
		IF nWrote = 1 THEN	
			next();
		END_IF
	2:	IF stream.Length >= 1 THEN
			stream.Read(ADR(byByte), 1);
			CASE byByte OF
				16#A8: udiNumDL := 1;
				16#D1: udiNumDL := 2;
			END_CASE
	// Read Data-Logger Type (also polls for new data)
	3: 	nWrote := stream.WriteByte(16#AB);
	4:	IF stream.Length >= 1 THEN
			byByte := stream.ReadByte();
				16#AB: reset(); // no new data
				16#80: next(); // UVR1611
				16#90: next(); // UVR61-3
	// Read sensor data
	5:	IF stream.Length >= (39 + 16 + 1) * udiNumDL THEN
			FOR i:=0 TO udiNumDL-1 DO
				stream.Read(ADR(audtSensor[i]), 39);
				stream.Read(ADR(audtSolar1[i]), 8);
				stream.Read(ADR(audtSolar2[i]), 8);
				byChecksum := stream.ReadByte();
 			END_FOR
	// Convert RAW data to temperatures and boolean actor data
		udtInput.C0_S2  := THIS^.raw2temp(audtSensor[0].auiTemperature[1]);
		udtInput.C0_S4  := THIS^.raw2temp(audtSensor[0].auiTemperature[3]);
		udtInput.C0_S6  := THIS^.raw2temp(audtSensor[0].auiTemperature[5]);
		udtInput.C0_S8  := THIS^.raw2temp(audtSensor[0].auiTemperature[7]);
		udtInput.C0_S10 := THIS^.raw2temp(audtSensor[0].auiTemperature[9]);
		udtInput.C0_S12 := THIS^.raw2temp(audtSensor[0].auiTemperature[11]);
		udtInput.C0_S14 := THIS^.raw2temp(audtSensor[0].auiTemperature[13]);
		udtInput.C0_S16 := THIS^.raw2temp(audtSensor[0].auiTemperature[15]);
		udtInput.C1_S2  := THIS^.raw2temp(audtSensor[1].auiTemperature[1]);
		udtInput.C1_S4  := THIS^.raw2temp(audtSensor[1].auiTemperature[3]);
		udtInput.C1_S6  := THIS^.raw2temp(audtSensor[1].auiTemperature[5]);
		udtInput.C1_S8  := THIS^.raw2temp(audtSensor[1].auiTemperature[7]);
		udtInput.C1_S10 := THIS^.raw2temp(audtSensor[1].auiTemperature[9]);
		udtInput.C1_S12 := THIS^.raw2temp(audtSensor[1].auiTemperature[11]);
		udtInput.C1_S14 := THIS^.raw2temp(audtSensor[1].auiTemperature[13]);
		udtInput.C1_S16 := THIS^.raw2analog(audtSensor[1].auiTemperature[15]);
		
		udtInput.C0_A0 := audtSensor[0].abyDOUT[0];
		udtInput.C0_A1 := audtSensor[0].abyDOUT[1];
		udtInput.C1_A0 := audtSensor[1].abyDOUT[0];
		udtInput.C1_A1 := audtSensor[1].abyDOUT[1];
	// End
	7:	reset();
			
END_CASE