6.8 Absolute Encoders

The absolute encoder records the current position of the stop position even when the power supply is OFF.

With a system that uses an absolute encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power supply to the system is turned ON.

There are four types of encoders for Rotary Servomotors. The usage of the encoder is specified in $Pn002 = n.\Box X \Box \Box$.

SERVOPACKs with software version 0023 or higher support batteryless absolute encoders.

Refer to the following section for encoder models.

■ Encoder Resolution on page 5-45

Parameter Settings When Using an Incremental Encoder

Parameter		Meaning	When Enabled	Classification
	n.□0□□ (default setting)	Use the encoder as an incremental encoder. A battery is not required.		Setup
Pn002 (2002h)	n.0100	Use the encoder as an incremental encoder. A battery is not required.	After restart	
	n.0200	Use the encoder as a single-turn absolute encoder. A battery is not required.		

· Parameter Settings When Using a Single-Turn Absolute Encoder

Parameter		Meaning	When Enabled	Classification
Pn002	n.□0□□ (default setting)	Use the encoder as a single-turn absolute encoder. A battery is not required.		Setup
	n.0100	Use the encoder as an incremental encoder. A battery is not required.	After restart	
	n.0200	Use the encoder as a single-turn absolute encoder. A battery is not required.	Ť	

· Parameter Settings When Using a Multiturn Absolute Encoder

Parameter		Meaning	When Enabled	Classification
Pn002 (2002h)	n.□0□□ (default setting)	Use the encoder as a multiturn absolute encoder. A battery is required.	After restart	Setup
	n.0100	Use the encoder as an incremental encoder. A battery is not required.		
	n.0200	Use the encoder as a single-turn absolute encoder. A battery is not required.	Ť	

· Parameter Settings When Using a Batteryless Multiturn Absolute Encoder

Parameter		Meaning	When Enabled	Classification
Pn002 (2002h)	n.□0□□ (default setting)	Use the encoder as a batteryless multiturn absolute encoder. A battery is not required.		
	n.0100	Use the encoder as an incremental encoder. A battery is not required.	After restart	Setup
	n.¤2¤¤	Use the encoder as a single-turn absolute encoder. A battery is not required.		Setup

NOTICE

• Install a battery at either the host controller or on the Encoder Cable.

If you install batteries both at the host controller and on the Encoder Cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning.

6.8.1 Connecting an Absolute Encoder

You can get the position data from the absolute encoder with EtherCAT communications. Therefore, it is not necessary to wire the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals.

If they need to be wired, refer to the following section.

[J 4.4.3 Wiring the SERVOPACK to the Encoder on page 4-28

34.5.3 I/O Signal Wiring Examples on page 4-40

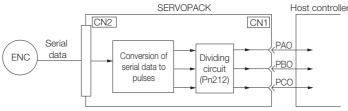
6.8.2 Structure of the Position Data of the Absolute Encoder

The position data of the absolute encoder is the position coordinate from the origin of the absolute encoder.

If you use the encoder divided pulse output (PAO, PBO, and PCO) signals to get the position information, the position data from the absolute encoder contains the following two items.

- The number of rotations from the origin of the encoder coordinate system (called the multiturn data)
- The position (number of pulses) within one rotation

The position data of the absolute encoder is as follows:


Position data of absolute encoder = Multiturn data \times Number of pulses within one encoder rotation (setting of Pn212) + Position (number of pulses) within one rotation.

For a single-turn absolute encoder, the multiturn data is 0.

6.8.3 Output Ports for the Position Data from the Absolute Encoder

You can read the position data of the absolute encoder from the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals.

The output method and timing for the position data of the absolute encoder are different in each case. A conceptual diagram of the connections of the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals to the host controller is provided below.

Signal	Status	Signal Contents When Using an Absolute Encoder
PAO	First signal	Multiturn data position within one rotation (pulse train)
	During normal operation	Incremental pulses
PBO	First signal	Position within one rotation (pulse train)
	During normal operation	Incremental pulses
PCO	Always	Origin pulse

The PAO (Encoder Divided Pulse Output) signal outputs the position data from the absolute encoder after the control power supply is turned ON.

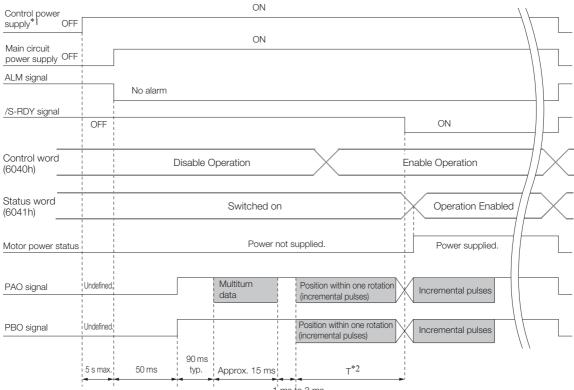
The position data of the absolute encoder is the current stop position. The absolute encoder outputs the multiturn data with the specified protocol. The absolute encoder outputs the position within one rotation as a pulse train. It then outputs pulses as an incremental encoder (incremental operation status).

6

6.8.4 Reading the Position Data from the Absolute Encoder

The host controller must have a reception circuit (e.g., UART) for the position data from the absolute encoder. The pulse counter at the host controller will not count pulses when the multiturn data (communications message) is input because only phase A is input. Counting starts from the position of the absolute encoder within one rotation.

The output circuits for the PAO, PBO, and PCO signals use line drivers. Refer to the following section for details on line drivers.


A.5.4 I/O Circuits on page 4-42

6.8.4 Reading the Position Data from the Absolute Encoder

The sequence to read the position data from the absolute encoder of a Rotary Servomotor is given below.

The multiturn data is sent according to the transmission specifications.

The position of the absolute encoder within one rotation is output as a pulse train.

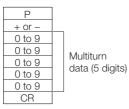
1 ms to 3 ms

*1. The pulse output time T for the position of the absolute encoder within one rotation depends on the setting of Pn212 (Number of Encoder Output Pulses). Refer to the following table.

Setting of Pn212	Calculation of the Pulse Output Speed for the Position of the Absolute Encoder within One Rotation	Calculation of the Pulse Output Time T for the Position of the Absolute Encoder within One Rotation
16 to 16,384	680 × Pn212/16,384 [kpps]	25 ms max.
16,386 to 32,768	680 × Pn212/32,768 [kpps]	50 ms max.
32,722 to 65,536	680 × Pn212/65,536 [kpps]	100 ms max.
65,544 to 131,072	680 × Pn212/131,072 [kpps]	200 ms max.
131,088 to 262,144	680 × Pn212/262,144 [kpps]	400 ms max.
262,176 to 524,288	680 × Pn212/524,288 [kpps]	800 ms max.
524,352 to 1,048,576	680 × Pn212/1,048,576 [kpps]	1,600 ms max.

6.8.5 Transmission Specifications

The position data transmission specifications for the PAO (Encoder Divided Pulse Output) signal are given in the following table.


The PAO signal sends only the multiturn data.

Refer to the following section for the timing of sending the position data from the absolute encoder. \bigcirc 6.8.4 Reading the Position Data from the Absolute Encoder on page 6-32

Item	PAO signal
Synchronization Method	Start-stop synchronization (ASYNC)
Baud Rate	9,600 bps
Start Bits	1 bit
Stop Bits	1 bit
Parity	Even
Character Code	ASCII, 7 bits
Data Format	Refer to Data Format of PAO Signal.
Data Output Period	Only once after the control power supply is turned ON

Data Format of PAO Signal

As shown below, the message format consists of eight characters: "P," the sign, the 5-digit multiturn data, and "CR" (which indicates the end of the message).

6