
CmpCrypto and CmpX509Cert
The source code of the examples can be found inside the CryptoDemo.project for downloading.

Cryptographic methods are important to achieve the following goals when processing data:

Integrity of data will ensure that the recipient can be confident that the data can not be modified
unnoticed.
Authenticity means that the recipient can be sufficiently certain that a record has really been created by
its supposed author.
Confidentiality aims to prevent unauthorized access to the relevant data under all circumstances.

We distinguish between three cases in which the terms mentioned above play a major role:

This is data that is currently being processed on the local processor (Data in Use).
In this case, data security depends very much on the design and properties of the local hardware. Since
the data has to be processed at this moment, active encryption, for example, is not useful. The hardware
environment must, for example, ensure that the frequency patterns resulting from the processing of the
data cannot be traced back to the original data content.

This is data that is transported from one location to another (Data in Motion).
The data is transported via so-called transport channels. One channel may be protected against
manipulation and monitoring by third parties. We then talk about a safe channel. Without these safety
features, we are talking about an unsafe channel. For transmission through an unsafe channel, the data
packets can be prepared by encryption and a signature. This protects them against interception and
unnoticed changes. Encrypting and signing data usually involves a lot of computing effort.When using a
secure channel, additional data handling should be avoided because the channel already provides all
necessary security measures and the additional effort by signing or encrypting makes no sense.

This is data stored in a specific location (Data at Rest).
If a site for storing our data is protected against unnoticed manipulation of our data, then we are talking
about a trusted location. If these assumptions do not apply to a particular location, we are talking about an
untrusted location. By encrypting our data and creating a signature, data can be stored in untrusted
locations without the risk of unauthorized use or unnoticed modification.

The collection of functions in the CODESYS libraries CmpCrypto.library and CmpX509Cert.library significantly
reduces your own effort required to enable secure data processing. But the functionality provided requires
proper use. These functions are an important basis for secure data processing. But the security of the data
and its processing also depends on the environment in which the library functionality is used. It depends very
much on how the results of these functions are linked and whether the correct function has been selected for
the task in hand.

Cryptographic protection is usually based on two basic assumptions:

Good, long random numbers can be generated efficiently.
The quality of random numbers depends on the quality of the random number generator, which is
unpredictable in its output and does not give preference to the generation of certain numbers. The large
length of a random number is important because it increases the effort to guess the number by simply
trying it out.

There are functions whose effort to calculate their inverse function differs greatly from the effort to
calculate the actual function. We then speak of so-called one-way functions.
In a broader sense, functions are also referred as one-way functions for which no reversal is known to
date, that is practically calculable within a reasonable period of time.

The last sentence reveals a risk of all currently used cryptographic procedures. The more powerful the
next generation of computers becomes, the more likely it is that a specific inversion function can be
calculated in acceptable time. This means that it is no longer possible to talk about a one-way function and
the related algorithm has become vulnerable.

Crypto Example

1/15

file:///D:/Consulting/Previous%20Sprint/CDS-61723%20Store%20datasheets%20-%20Improve%20CSS%20for%20better%20looking%20datasheets/svn/DataSheets/Scripts/CreateDatasheet/Build/Frame/html/_images/public_private_keygeneration.svg
file:///D:/Consulting/Previous%20Sprint/CDS-61723%20Store%20datasheets%20-%20Improve%20CSS%20for%20better%20looking%20datasheets/svn/DataSheets/Scripts/CreateDatasheet/Build/Frame/html/_images/public_key_cryptography.svg
file:///D:/Consulting/Previous%20Sprint/CDS-61723%20Store%20datasheets%20-%20Improve%20CSS%20for%20better%20looking%20datasheets/svn/DataSheets/Scripts/CreateDatasheet/Build/Frame/html/_images/digital_signature.svg

Note

Example of a One-Way function:
The multiplication of two prime numbers can be “easily” computed, while for the inversion, the prime factorization,
currently no efficient algorithm was published... (see: Prime decomposition)

Therefore, it is an extremely important prerequisite for secure data processing that the algorithms used can be
changed at any time and without delay if it becomes known at a certain point in time that the currently used
algorithm can be successfully attacked and thus its protective function is no longer guaranteed.

Note

It is a good idea to design your own functions in such a way that the algorithms used for certain cryptography
functions can be easily replaced. The different algorithms available in the CODESYS environment are encoded in the
RtsCryptoID enumeration. The important parameters such as “block size” or “key size” of a certain algorithm must
be determined e. g. with the help of Wikipedia. After CDS-58920 is available the neccecary information can be
queried with the CryptoGetAlgorithmInfo library function.

References:

Performance
Key exchange
RSA Kryptosystem
Hybride_VerschlÃ¼sselung
Difference sha-1, sha-2, sha-256 hash algorithms/
Advanced Encryption Standard
Cryptographic Message Syntax (CMS)

Random Numbers
The following code example produces a series of random integers in the range 1 to 10:

VAR
 udiCounter : UDINT;
 usiNumber : USINT;
 bsNumber : RtsByteString := (ui32MaxLen:=SIZEOF(usiNumber), pByData:=ADR(usiNumber));
 Result : RTS_IEC_RESULT;
END_VAR

Result := CryptoGenerateRandomNumber(ui32NumOfRandomBytes:=SIZEOF(usiNumber), pRandom:=ADR(bsNumber));
Random := (usiNumber MOD 10) + 1;

After some time, the histogram shows an equal distribution of the generated random numbers (in the example
of numbers 1 to 10). This is one of the expected quality criterion for a random number generator. Another
criterion for the quality of random numbers is variance of the initial values. The harder it is to predict the
generated series of numbers, the more secure are the algorithms for encryption based on this random
numbers. (See: Wikipedia)

See:

Crypto Example

2/15

https://en.wikipedia.org/wiki/Integer_factorization
http://jira.codesys.com/browse/CDS-58920
https://stackoverflow.com/questions/118463/what-is-the-performance-difference-of-pki-to-symmetric-encryption/124248#124248
https://security.stackexchange.com/questions/8343/what-key-exchange-mechanism-should-be-used-in-tls/8348#8348
https://de.wikipedia.org/wiki/RSA-Kryptosystem
https://de.wikipedia.org/wiki/Hybride_Verschl%C3%83%C2%BCsselung
https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/
https://de.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.heise.de/netze/rfc/rfcs/rfc5652.shtml
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

https://www.random.org/
Analysis of an On-line Random Number Generator, April 2001, Louise Foley
Random Number Generators, April 2005, Charmaine Kenny

Hashing
A hash function can map the content of a message (a memory area) of any length to a byte array with a fixed
length. This property is often used to determine whether a particular message has been changed, for example,
during transport to the recipient. In addition to the way in which messages are exchanged, the sender and
receiver must also have agreed on which hash algorithm they want to use. The recipient can then apply the
same hash function to the received message and compare the result with the received hash value. The
message was most likely not modified if the two hash values are identical. The hash value of a message is
often called its fingerprint. Using a fingerprint, the consistency of the data transmitted can be detected with a
high probability. However, the authenticity of the transmission cannot be determined. It is very easy to imagine
that on the way from the sender to the recipient the message can be intercepted, modified and a new correct
hash code can be calculated and forwarded to the recipient.

Fox

The red fox
runs across

the ice

The red fox
walks across

the ice

Hash
function

Hash
function

Hash
function

DFCD3454

52ED879E

46042841

Input Hash sum

A typical hash function at work. Note that the hash sums are always the same size, no matter how short or long
the input is. Also note that the hash sums look very different even when there are only slight differences in the
input. The hash sums seen here (in hexadecimal format) are actually the first four bytes of the SHA-1 hash
sums of those text examples. (See: Wikipedia)

For example, to check a message with the SHA1 algorithm, the following actions are necessary:

Provide a memory area for the message.
Prepare an additional memory area and initializes it with the related hash code.
The SHA1 algorithm calculates a hash code with a length of 20 bytes. Therefore, this amount of memory
area must be appropriately provided.

VAR
 _hHASH : RTS_IEC_HANDLE := CryptoGetAlgorithmById(ui32CryptoID:=RtsCryptoID.HASH_SHA1, pResult:=0);
 sMessage : MESSAGE := 'The red fox runs across the ice';
 abyHashCode : HASH_CODE := [
 16#52, 16#ED, 16#87, 16#9E, 16#70,
 16#F7, 16#1D, 16#92, 16#6E, 16#B6,
 16#95, 16#70, 16#08, 16#E0, 16#3C,
 16#E4, 16#CA, 16#69, 16#45, 16#D3
];
 xMessageOK : BOOL;
END_VAR

xMessageOK := CheckMessage(sMessage, abyHash);

The algorithm has in CODESYS the id RtsCryptoID.HASH_SHA1. With this assumption, a method for checking the
message could look like this:

Crypto Example

3/15

https://www.random.org/
https://commons.wikimedia.org/wiki/File:Hash_function.svg

METHOD CheckMessage : BOOL
VAR_INPUT
 sMessage : REFERENCE TO MESSAGE;
 abyHashCode : REFERENCE TO HASH_CODE;
END_VAR
VAR
 Result : RTS_IEC_RESULT;
 bsMessage : RtsByteString := (ui32MaxLen:=SIZEOF(sMessage), pbyData:=ADR(sMessage), ui32Len:=TO_UDINT(LEN(sMessage)));
 bsHashCode : RtsByteString := (ui32MaxLen:=SIZEOF(abyHashCode), pbyData:=ADR(abyHashCode), ui32Len:=SIZEOF(HASH_CODE));
 abyNewHashCode : HASH_CODE;
 bsNewHashCode : RtsByteString := (ui32MaxLen:=SIZEOF(HASH_CODE), pbyData:=ADR(abyNewHashCode), ui32Len:=0);
 diCmpResult : DINT;
END_VAR

Result := CryptoGenerateHash(hAlgo:=_hHASH, pData:=ADR(bsMessage), pHash:=ADR(bsNewHashCode));
diCmpResult := SysMemCmp(pBuffer1:=ADR(abyHashCode), pBuffer2:=ADR(abyNewHashCode), udiCount:=SIZEOF(HASH_CODE));
CheckMessage := diCmpResult = 0;

Note

The comparison of hash values must be carried out very carefully. A seemingly successful comparison leads to a
message, for which the hash values have been calculated, being mistakenly accepted as unchanged!

Calculating hash values is a good thing if you are looking for an efficient method to convert large amounts of
data into a relatively short byte sequence. This byte sequence is very likely to uniquely identify the content of
the data set, if the hashing algorithm is selected appropriately. For example, only relatively short hash values
can be used to compare large amounts of data. A special feature of good hashing algorithms in general is
important. Two different data sets are very likely to never provide the same hash value (Collision-Resistant
Hash Function).

Hashed Based Message Authentication Code
A hash-based message authentication code (HMAC) can be used to sign a record. In this way, HMAC can be
used at a later date to ensure that the content of the data has not been falsified in the meantime and that the
identity of the data source has not changed. The difference to the simple application of a hash algorithm from
the last chapter is that this method includes a secret key in addition to the data. Therefore, in addition to the
knowledge of the selected algorithm and the actual data, a secret key is also required to check the HMAC.

key
i_pad

i key pad

XOR

64 Byte

<= 64 Byte

key
o_pad

o key pad

XOR

64 Byte

<= 64 Byte

i key pad message

hash sum 1

o key pad hash sum 1

hash sum 2

SHA1 - 1st pass

SHA1 - 2nd pass

64 Byte

20 Byte

Description of the SHA-1 HMAC Generation. See: Wikipedia

In the following example, an agreement was made regarding a secret (_sSecret) and the hash algorithm to be
used (HMAC_SHA1). On this basis, messages can now be signed (SignMessage). The signature obtained from this
procedure can then be used at a later point in time to check the integrity of the message (VerifyMessage).

VAR
 _hHMAC : RTS_IEC_HANDLE := CryptoGetAlgorithmById(ui32CryptoID:=RtsCryptoID.HMAC_SHA1, pResult:=0);
 _sSecret : SECRET := 'MySecret';

 abySignature : SIGNATURE;
 xMessageOK : BOOL;
 sMessage : MESSAGE := 'The red fox runs across the ice';
END_VAR

Crypto Example

4/15

file:///D:/Consulting/Previous%20Sprint/CDS-61723%20Store%20datasheets%20-%20Improve%20CSS%20for%20better%20looking%20datasheets/svn/DataSheets/Scripts/CreateDatasheet/Build/Frame/html/_images/SHAhmac.svg
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

abySignature := SignMessage(sMessage);
xMessageOK := VerifyMessage(sMessage, abySignature);

The same secret is required for generating the signature and checking it. As long as the secret remains really
secret, it is very unlikely that someone can change the message content unnoticed and create a suitable
signature. This probability depends on the strength of the secret, of course. The easier this secret can be
guessed (Rainbow Table), or the faster it can be found through repeated testing (Brute-force Attack), the lower
the achievable security against unwanted manipulations.

METHOD SignMessage : SIGNATURE
VAR_INPUT
 sMessage : REFERENCE TO MESSAGE;
END_VAR
VAR
 Result : RTS_IEC_RESULT;
 bsSecret : RtsByteString := (ui32MaxLen:=SIZEOF(_sSecret), ui32Len:=TO_UDINT(LEN(_sSecret)), pByData:=ADR(_sSecret));
 ksStorage : RtsCryptoKeyStorage := (byteString:=bsSecret);
 ckSecret : RtsCryptoKey := (keyType:=RtsCryptoKeyType.KeyType_Key, key:=ksStorage);
 bsMessage : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(LEN(sMessage)), pByData:=ADR(sMessage));
 bsSignature : RtsByteString := (ui32MaxLen:=SIZEOF(SIGNATURE), ui32Len:=0, pByData:=ADR(SignMessage));
END_VAR

Result := CryptoHMACSign(
 hAlgo:=_hHMAC,
 pData:=ADR(bsMessage),
 key:=ckSecret,
 pSignature:=ADR(bsSignature)
);

METHOD VerifyMessage : BOOL
VAR_INPUT
 sMessage : REFERENCE TO MESSAGE;
 abySignature : REFERENCE TO MESSAGE;
END_VAR
VAR
 Result : RTS_IEC_RESULT;
 bsSecret : RtsByteString := (ui32MaxLen:=SIZEOF(_sSecret), ui32Len:=TO_UDINT(LEN(_sSecret)), pByData:=ADR(_sSecret));
 ksStorage : RtsCryptoKeyStorage := (byteString:=bsSecret);
 ckSecret : RtsCryptoKey := (keyType:=RtsCryptoKeyType.KeyType_Key, key:=ksStorage);
 bsMessage : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(LEN(sMessage)), pByData:=ADR(sMessage));
 abyNewSignature : SIGNATURE;
 bsSignature : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=0, pByData:=ADR(abyNewSignature));
 diCmpResult : DINT;
END_VAR

Result := CryptoHMACSign(
 hAlgo:=_hHMAC,
 pData:=ADR(bsMessage),
 key:=ckSecret,
 pSignature:=ADR(bsSignature)
);
diCmpResult := SysMemCmp(pBuffer1:=ADR(abySignature), pBuffer2:=ADR(abyNewSignature), udiCount:=SIZEOF(SIGNATURE));
VerifyMessage := diCmpResult = 0;

Note

The comparison of signature values must be implemented very carefully. A seemingly successful comparison leads
to a message being mistakenly accepted as unchanged!

Encryption
By encrypting, a “plain text”, i. e. a clearly readable text, is converted into a “cipher text”, i. e. into an obscure
character string. The terms plain text and cipher text have evolved historically and can be seen symbolically. In
addition to text messages, it is also possible to encrypt other types of information such as voice messages,
image recordings or the source code of programs. The underlying cryptographic principles remain the same.

Symmetric Encryption

Encryption methods that work with a secret key that is used both for encryption and decryption are called
symmetric methods and they are part of the area of symmetric cryptography. Almost all symmetrical encryption
algorithms are optimized for restricted environments. They are characterized by low hardware requirements,

Crypto Example

5/15

https://en.wikipedia.org/wiki/Rainbow_table
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Symmetric-key_algorithm

low energy consumption and are easy to implement in hardware.

The encryption methods of symmetric cryptography work with a single key, which must be present during
encryption and decryption. These procedures are fast and with correspondingly long keys, they also offer a
high level of security.

The crucial point is the key exchange between the communication partners. Before a encrypted data
transmission can start, the communication partners must agree on a specific key and exchange it. If an attacker
has the key, he can not only decrypt the data, but also encrypt the data himself without the respective
communication partner is being able to noticing it. A secure key exchange is a central problem of symmetric
cryptography. This problem can be solved by methods of asymmetric encryption.

The use of asymmetric cryptography for key exchange and the use of symmetric cryptography for the transport
of messages provides security against the loss of the secret keys and utilises the speed advantage that
symmetric methods usually offer. Please refer to Hybrid Encryption or the “Pay by Use” Example for more
detailed information.

Exemplary usage of AES-256 in CBC Mode

Further References:

Advanced Encryption Standard (AES)
Cipher Block Chaining (CBC)
Initialization vector
Padding

VAR
 _hCipher : RTS_IEC_HANDLE := CryptoGetAlgorithmById(ui32CryptoID:=RtsCryptoID.AES_256_CBC, pResult:=0);
 _szBlock : ULINT := 16; // Blocksize of ``_hCipher`` => 128 Bit for AES-256-CBC
 _sKey : SECRET; // 256 Bit Secret Key
 _szKey : ULINT := 32; // 256 Bit Key length
 _sInitVector : MESSAGE; // Random Initial Value of Length ``_szBlock``
END_VAR

Cipher Block Chaining (CBC) mode encryption

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

Initialization Vector (IV)

Using a randomized init vector and reusing the cipher text from the precursor stage each cipher text block
depends on all plain text blocks processed up to that point. With this each cipher text block is unique. So it is

Crypto Example

6/15

https://en.wikipedia.org/wiki/Hybrid_cryptosystem
file:///D:/Consulting/Previous%20Sprint/CDS-61723%20Store%20datasheets%20-%20Improve%20CSS%20for%20better%20looking%20datasheets/svn/DataSheets/Scripts/CreateDatasheet/Build/Frame/html/_images/symmetric_cryptography.svg
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Padding_(cryptography)

not possible to get the same cipher text block for a repeated content of a plain text block. The key is a common
secret between the party who encrypts the message end the party who decrypts the message. The init vector
data has to be the same on both sides, but these data has not to be kept secret.

METHOD EncryptMessage : ULINT
VAR_INPUT
 sPlainText : REFERENCE TO MESSAGE;
 szPlainText : ULINT;
 sCipherText : REFERENCE TO MESSAGE;
END_VAR
VAR
 Result : RTS_IEC_RESULT;

 bsKey : RtsByteString := (ui32MaxLen:=SIZEOF(_sKey), ui32Len:=TO_UDINT(_szKey), pByData:=ADR(_sKey));
 ksStorage : RtsCryptoKeyStorage := (byteString:=bsKey);
 ckKey : RtsCryptoKey := (keyType:=RtsCryptoKeyType.KeyType_Key, key:=ksStorage);

 bsInitVector : RtsByteString := (ui32MaxLen:=SIZEOF(_sInitVector), ui32Len:=TO_UDINT(_szBlock), pByData:=ADR(_sInitVector));
 bsPlainText : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(szPlainText), pByData:=ADR(sPlainText));
 bsCipherText : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=0, pByData:=ADR(sCipherText));
END_VAR

The randomized initialization of the key and the init vector makes it very difficult to predict the results of the
encryption process.

Result := CryptoGenerateRandomNumber(ui32NumOfRandomBytes:=TO_UDINT(_szKey), pRandom:=ADR(bsKey));
Result := CryptoGenerateRandomNumber(ui32NumOfRandomBytes:=TO_UDINT(_szBlock), pRandom:=ADR(bsInitVector));

Result := CryptoSymmetricEncrypt(
 hAlgo:=_hCipher,
 pPlainText:=ADR(bsPlainText),
 key:=ckKey,
 pInitVector:=ADR(bsInitVector),
 xEnablePadding:=TRUE,
 pCipherText:=ADR(bsCipherText)
);
IF Result = ERR_OK THEN
 EncryptMessage := bsCipherText.ui32Len;
END_IF

Cipher Block Chaining (CBC) mode decryption

block cipher
decryptionKey

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryptionKey

Plaintext

Ciphertext

block cipher
decryptionKey

Plaintext

Ciphertext

METHOD DecryptMessage : ULINT
VAR_INPUT
 sCipherText : REFERENCE TO MESSAGE;
 szCipherText : ULINT;
 sPlainText : REFERENCE TO MESSAGE;
END_VAR
VAR
 Result : RTS_IEC_RESULT;

 bsKey : RtsByteString := (ui32MaxLen:=SIZEOF(_sKey), ui32Len:=TO_UDINT(_szKey), pByData:=ADR(_sKey));
 ksStorage : RtsCryptoKeyStorage := (byteString:=bsKey);
 ckKey : RtsCryptoKey := (keyType:=RtsCryptoKeyType.KeyType_Key, key:=ksStorage);

 bsInitVector : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(_szBlock), pByData:=ADR(_sInitVector));
 bsCipherText : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(szCipherText), pByData:=ADR(sCipherText));
 bsPlainText : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=0, pByData:=ADR(sPlainText));
END_VAR

Crypto Example

7/15

Result := CryptoSymmetricDecrypt(
 hAlgo:=_hCipher,
 pCipherText:=ADR(bsCipherText),
 key:=ckKey,
 pInitVector:=ADR(bsInitVector),
 xEnablePadding:=TRUE,
 pPlainText:=ADR(bsPlainText)
);
IF Result = 0 THEN
 DecryptMessage := bsPlainText.ui32Len;
END_IF

A easy procedure for testing the two methods from above is to compare the original message (abyPlainText)
with the decrypted message (abyDecryptedText).

szCipherText := EncryptMessage(abyPlainText, TO_ULINT(LEN(abyPlainText)), abyCipherText);
szDecryptedText := DecryptMessage(abyCipherText, szCipherText, abyDecryptedText);
IF szDecryptedText > 0 THEN
 diCmpResult := SysMemCmp(pBuffer1:=ADR(abyPlainText), pBuffer2:=ADR(abyDecryptedText), udiCount:=TO_UDINT(szDecryptedText));
END_IF

Note

An effective and thus secure encryption is not only ensured by the fact that someone selects e.g. the AES
algorithm. It depends very much on the appropriate selection of the parameters “Key length”,”Key value” and
“Operating mode”. If these parameters are not selected correctly, an attacker may find it very easy to get to know the
supposedly well hidden secret.

Whenever possible, an already existing encryption mechanism should be used. For example, the use of the TLS
protocol is usually preferred for encrypted communication between two computers via a TCP/IP network. The data
can then be transmitted over such a secure channel without the application having to worry about encryption itself.

Combination of Signing and Encrypting

As described in Hashed Based Message Authentication Code, these methods can be used to determine the
integrity and originator of a message beyond doubt. In this context, it is important to follow a strict sequence of
procedures. In a first step, the message should be encrypted only in the second step the HMAC should be
generated. By this procedure, the receiver can check in a first step by the evaluation of the HMAC whether the
received message was changed and then decrypt only an unmodified message. It is important that messages
with an invalid HMAC are not decrypted but discarded unseen. The result of the decryption process with
specially prepared messages can provide an attacker with important information that allows him to draw
conclusions about the parameters of the encryption method.

Asymmetric Encryption

In order to be able to use the methods for asymmetric encryption, the sender of a message creates a key pair
beforehand. A “private key” and a “public key” are created. The private key must be kept secret. It is not
possible to draw conclusions about the private key from the public key, so it is completely safe to make the
public key generally accessible.

The key pair can now be used to perform various operations:

The public key can be used by anyone to encrypt data records. However, decryption of this data can only
succeed with the help of the private key.
The private key can be used to sign a data record. With the help of the public key this signature can be
verified and so the originator of the data and the integrity of these data can be determined without doubt.

Thus, if the sender and receiver of a message manage their own key pair, all tasks of an encrypted
communication can be accomplished without the two partners having to exchange a common, secret
information. It is thus ensured that the recipient of a message can ascertain the originator of this message
without doubt and can check at any time whether the message was falsified on its way to him. Both participants
can be sure that it was not possible for an attacker to gain knowledge of the content of the message.

That sounds like a perfect method for the secure exchange of data. But there are a few important things to
consider:

The construction of the key pairs must follow a number of rules. It is therefore necessary to use a
trustworthy software and to keep it up to date with the latest state of the art. Without these measures, an
attacker may be able to leverage the integrity, authenticity or security of the data.

Crypto Example

8/15

The private key must never come to the attention of anyone other than its owner.
The owner of a public key must be clearly identifiable. This is usually done via a certificate issued by a
trusted authority. It is therefore very important to verify the certificate before using the related public key.
The operations of asymmetric encryption are very time consuming and are not suitable for handling a
large amount of data.

The use of asymmetric cryptography for the key exchange only (small amount of data) and the use of
symmetric cryptography for the transport of messages (large amount of data) utilities the speed advantage that
symmetric methods usually offer. This combination provides a solution of the key exchange problem in the field
of symmetric cryptography.

Please refer to Hybrid Encryption or the “Pay by Use” Example for more detailed information.

Key pair Generation

In the CODESYS environment, the PLC shell and the security screen provide many tools for generating,
managing, importing and exporting certificates and keys. The following illustrations are based on the use of
these tools.

In order to create a key pair on a PLC, a pseudo component is required that can serve as a client for the
certificate store of the CODESYS runtime system.

hComponent := CMAddComponent(sComponentName, dwComponentId, dwComponentVersion, ADR(Result));
IF Result = ERR_OK THEN
 hCertStore := X509CertStoreOpen(dwComponentId, ADR(Result));
END_IF

The new component can be identified in the list of all certificate store client components by its name (e.g.
“MyTestApplication”):

> cert-getapplist

Nr. ComponentName CommonName CertAvailable DateNotBefore DateNotAfter Thumbprint

0 CmpOPCUAServer OPCUAServer@DOLLWONB FALSE -- -- --
1 CmpSecureChannel DOLLWONB FALSE -- -- --
2 CmpApp DOLLWONB FALSE -- -- --
3 CmpWebServer DOLLWONB FALSE -- -- --
4 MyTestApplication MyTestApplication FALSE -- -- --

In the next step, a self-signed certificate is created for the component specified by the index parameter with a
valid period of time of a certain duration.

> cert-genselfsigned 4 expdays=10

Generate self-signed certificate with given index with valid time of 10 day(s). Check logger to see when finished.

Checking the logger will result in an similar picture like the following:

Crypto Example

9/15

https://en.wikipedia.org/wiki/Hybrid_cryptosystem

The list of certificates now available can be viewed using the “cert-getcertlist” command:

> cert-getcertlist own

--
List of own certificates
--
Number: 0
Thumbprint: 132245455ef12cf27ee94bd5125350bdc84fb4e5
Subjects:
 - commonName: MyTestApplication
Valid from: 25.7.2017 12:47:36
Valid until: 4.8.2017 12:47:36

There is always a key pair behind a certificate in the CODESYS certificate store. The secret private key and the
public key associated with this certificate. In order for the public key to appear trustworthy to the communication
partners, the certificate must be signed by a trusted authority. In connection with the certificate from the last
section, we speak of a so called “self-signed certificate”.

In order to obtain the signature of a trusted authority for this certificate, a corresponding application must be
submitted. The “Certificate Signing Request” (CSR). This request can be generated as follows:

> cert-createcsr 4

Create CSR for application with given index. Check logger to see when finished.

After that the CSR can be uploaded from the PLC folder :

Certificate Access

IF _hComponent = RTS_INVALID_HANDLE THEN
 _hComponent := CMAddComponent(_sComponentName, _dwComponentId, _dwComponentVersion, ADR(Result));
 IF Result = Errors.ERR_OK THEN
 _hCertStore := X509CertStoreOpen(_dwComponentId, 0);
 certInfo.subject.numOfEntries := 1;
 certInfo.subject.entries := ADR(subject);
 RtsOIDCreate(ADR(KnownOIDs.RTS_OID_COMMON_NAME), ADR(subject.id));
 subject.value := ADR(_sComponentName);
 _hClaim := X509CertStoreRegister(_hCertStore, _dwComponentId, ADR(certInfo), ADR(Result));
 IF Result = Errors.ERR_OK THEN
 _hCert := X509CertStoreGetRegisteredCert(_hCertStore, _hClaim, 0);
 END_IF
 END_IF
END_IF
ProvideCertificate := (_hCert <> RTS_INVALID_HANDLE);

METHOD ReleaseCertificate

Crypto Example

10/15

_hCert := RTS_INVALID_HANDLE;
IF _hCertStore <> RTS_INVALID_HANDLE THEN
 X509CertStoreUnregister(_hCertStore, _hClaim);
 _hClaim := RTS_INVALID_HANDLE;
 X509CertStoreClose(_hCertStore);
 _hCertStore := RTS_INVALID_HANDLE;
END_IF
IF _hComponent <> RTS_INVALID_HANDLE THEN
 CMRemoveComponent(_hComponent);
 _hComponent := RTS_INVALID_HANDLE;
END_IF

Encryption

METHOD AsymmetricEncryptMessage : ULINT
VAR_INPUT
 sPlainText : REFERENCE TO MESSAGE;
 szPlainText : ULINT;
 abyCipherText : REFERENCE TO BUFFER;
END_VAR
VAR
 Result : RTS_IEC_RESULT;
 ksPublicKey : RtsCryptoKey;
 bsPlainText : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(szPlainText), pByData:=ADR(sPlainText));
 bsCipherText : RtsByteString := (ui32MaxLen:=SIZEOF(BUFFER), ui32Len:=0, pByData:=ADR(abyCipherText));
END_VAR

Result := X509CertGetPublicKey(
 hCert:=_hCert,
 pPublicKey:=ADR(ksPublicKey)
);
Result := CryptoAsymmetricEncrypt(
 hAlgo:=_hAsymmetricCipher,
 pPlainText:=ADR(bsPlainText),
 publicKey:=ksPublicKey,
 pCipherText:=ADR(bsCipherText)
);
AsymmetricEncryptMessage := bsCipherText.ui32Len;

Decryption

METHOD AsymmetricDecryptMessage : ULINT
VAR_INPUT
 abyCipherText : REFERENCE TO BUFFER;
 szCipherText : ULINT;
 sPlainText : REFERENCE TO MESSAGE;
END_VAR
VAR
 Result : RTS_IEC_RESULT;
 ksPrivateKey : RtsCryptoKey;
 bsCipherText : RtsByteString := (ui32MaxLen:=SIZEOF(BUFFER), ui32Len:=TO_UDINT(szCipherText), pByData:=ADR(abyCipherText));
 bsPlainText : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=0, pByData:=ADR(sPlainText));
END_VAR

Crypto Example

11/15

Result := X509CertGetPrivateKey(
 hCertStore:=_hCertStore,
 hCert:=_hCert,
 pPrivateKey:=ADR(ksPrivateKey)
);

Result := CryptoAsymmetricDecrypt(
 hAlgo:=_hAsymmetricCipher,
 pCipherText:=ADR(bsCipherText),
 privateKey:=ksPrivateKey,
 pPlainText:=ADR(bsPlainText)
);
AsymetricDecryptMessage := bsPlainText.ui32Len;

Signing

METHOD AsymmetricSignMessage : ULINT
VAR_INPUT
 sMessage : REFERENCE TO MESSAGE;
 szMessage : ULINT;
 abySignature : REFERENCE TO SIGNATURE;
END_VAR
VAR
 Result : RTS_IEC_RESULT;
 ksPrivateKey : RtsCryptoKey;
 bsPlainText : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(szMessage), pByData:=ADR(sMessage));
 bsSignature : RtsByteString := (ui32MaxLen:=SIZEOF(abySignature), ui32Len:=0, pByData:=ADR(abySignature));
END_VAR

Result := X509CertGetPrivateKey(
 hCertStore:=_hCertStore,
 hCert:=_hCert,
 pPrivateKey:=ADR(ksPrivateKey)
);

Result := CryptoSignatureGenerate(
 hAlgo:=_hAsymmetricSigningCipher,
 pData:=ADR(bsPlainText),
 privateKey:=ksPrivateKey,
 pSignature:=ADR(bsSignature)
);
AsymmetricSignMessage := bsSignature.ui32Len;

Verifying

METHOD AsymmetricVerifyMessage : BOOL
VAR_INPUT
 sMessage : REFERENCE TO MESSAGE;
 szMessage : ULINT;
 abySignature : REFERENCE TO SIGNATURE;
 szSignature : ULINT;
END_VAR
VAR
 Result : RTS_IEC_RESULT;
 ksPublicKey : RtsCryptoKey;
 bsMessage : RtsByteString := (ui32MaxLen:=SIZEOF(MESSAGE), ui32Len:=TO_UDINT(szMessage), pByData:=ADR(sMessage));
 bsSignature : RtsByteString := (ui32MaxLen:=SIZEOF(SIGNATURE), ui32Len:=TO_UDINT(szSignature), pByData:=ADR(abySignature));
END_VAR

Crypto Example

12/15

Result := X509CertGetPublicKey(
 hCert:=_hCert,
 pPublicKey:=ADR(ksPublicKey)
);

Result := CryptoSignatureVerify(
 hAlgo:=_hAsymmetricSigningCipher,
 pData:=ADR(bsMessage),
 publicKey:=ksPublicKey,
 pSignature:=ADR(bsSignature)
);
AsymmetricVerifyMessage := (Result = CmpErrors.Errors.ERR_OK);

Pay by Use
In an exemplary application use case, various functionalities were implemented for a system. Some of these
functions are available to all users. Other functions are only available if a certain condition is fulfilled. This
special prerequisite should be able to be transferred from the outside of the system via an untrusted channel
and should be active only for a certain period of time. The site that created the prerequisite for the use of the
protected functions must be identifiable by the system without any doubt, only then will the protected function
be activated and can be used.

A signed and encrypted document specifies which function is allowed to be used. In the further content of the
document, one can use a date specification to determine how long the respective functionality can be used.

With the help of the signature, the system can clearly determine who wrote the document and whether it has
undergone any changes in the meantime. Trough the (Asymmetric) Encryption only the recipient who has been
determined in advance can decrypt the document and use its contents.

The following drawing is intended to illustrate the first part of the procedure:

Data

Encrypt key

using receiver’s

public key

RSA

Encrypted Message

Encrypt Decrypt

Encrypt data

using random

key

q4fzNeBCRSYqv

Encrypted Key

Generate

Random

Key

Data

TIakvAQkCu2u
Random Key

Encrypted Message

Data

q4fzNeBCRSYqv

Encrypted Key

Decrypt data

using key

Decrypt using

receiver’s

private key

RSA

TIakvAQkCu2u

Data

Some notes on why which procedure was chosen:

Using a random key for symmetric encryption of the data increases security because its value is

Crypto Example

13/15

file:///D:/Consulting/Previous%20Sprint/CDS-61723%20Store%20datasheets%20-%20Improve%20CSS%20for%20better%20looking%20datasheets/svn/DataSheets/Scripts/CreateDatasheet/Build/Frame/html/_images/PayByUse.svg

unpredictable.
The use of symmetric encryption methods is recommended for larger amounts of data due to better
performance.
The use of asymmetric encryption is suitable for smaller data volumes. For this reason, only the key
required for symmetric encryption of data is addressed here.
The asymmetric signature and subsequent verification of this signature ensures that the author of the data
is the intended one. As long as no one else than the sender is in control of the private key.

The following pseudo code is intended to illustrate the two steps: Creating a document and utilize a document.

METHOD CreateDocument : BOOL;
VAR_INPUT
 ckPublicKey : RtsCryptoKey;
 bsData : RtsByteString;
 bsDocument : REFERENCE TO RtsByteString;
END_VAR
VAR
 bsEncryptedData : RtsByteString := (ui32MaxLen:=32, ui32Len:=0, pByData:=bsDocument.pByData);
 bsEncryptedKey : RtsByteString := (ui32MaxLen:=256, ui32Len:=0, pByData:=bsDocument.pByData + 32);
 bsSignature : RtsByteString := (ui32MaxLen:=256, ui32Len:=0, pByData:=bsDocument.pByData + 32 + 256);
 bsInitVector : RtsByteString := (ui32MaxLen:=TO_UDINT(_szBlock), ui32Len:=TO_UDINT(_szBlock), pbyData:=bsDocument.pByData + 32 + 256 + 256);

 Result : RTS_IEC_RESULT;

 abyKey : ARRAY[0..31] OF BYTE; // 256 Bit
 bsKey : RtsByteString := (ui32MaxLen:=SIZEOF(abyKey), ui32Len:=TO_UDINT(_szKey), pbyData:=ADR(abyKey));
 ksStorage : RtsCryptoKeyStorage := (byteString:=bsKey);
 ckKey : RtsCryptoKey := (keyType:=RtsCryptoKeyType.KeyType_Key, key:=ksStorage);

 ckPrivateKey : RtsCryptoKey;
 bsCollection : RtsByteString := (ui32MaxLen:=32 + 256, ui32Len:=32 + 256, pByData:=bsDocument.pByData);

 abyInitVector : ARRAY[0..15] OF BYTE; // Random Initial Value of Length ``_szBlock``
END_VAR

// Generate Random Key
Result := CryptoGenerateRandomNumber(ui32NumOfRandomBytes:=TO_UDINT(_szKey), pRandom:=ADR(bsKey));
// Generate Random InitVector
Result := CryptoGenerateRandomNumber(ui32NumOfRandomBytes:=TO_UDINT(_szBlock), pRandom:=ADR(bsInitVector));

// Symmetric Encrypt Data using Random Key
Result := CryptoSymmetricEncrypt(
 hAlgo:=_hSymmetricCryptoCipher,
 pPlainText:=ADR(bsData),
 key:=ckKey,
 pInitVector:=ADR(bsInitVector),
 xEnablePadding:=TRUE,
 pCipherText:=ADR(bsEncryptedData)
);

// Asymmetric Encrypt Random Key with Receiver's Public Key
Result := CryptoAsymmetricEncrypt(
 hAlgo:=_hAsymmetricCryptingCipher,
 pPlainText:=ADR(bsKey),
 publicKey:=ckPublicKey,
 pCipherText:=ADR(bsEncryptedKey)
);

// Asymmetric Sign the Collection of Encrypted Data and Encrypted Key with Sender's the Private Key
Result := X509CertGetPrivateKey(
 hCertStore:=_hCertStore,
 hCert:=_hCert,
 pPrivateKey:=ADR(ckPrivateKey)
);
Result := CryptoSignatureGenerate(
 hAlgo:=_hAsymmetricSigningCipher,
 pData:=ADR(bsCollection),
 privateKey:=ckPrivateKey,
 pSignature:=ADR(bsSignature)
);

Crypto Example

14/15

METHOD UtilizeDocument
VAR_INPUT
 ckPublicKey : RtsCryptoKey;
 bsDocument : RtsByteString;
 bsData : REFERENCE TO RtsByteString;
END_VAR
VAR
 bsEncryptedData : RtsByteString := (ui32MaxLen:=32, ui32Len:=32, pByData:=bsDocument.pByData);
 bsEncryptedKey : RtsByteString := (ui32MaxLen:=256, ui32Len:=256, pByData:=bsDocument.pByData + 32);
 bsSignature : RtsByteString := (ui32MaxLen:=256, ui32Len:=256, pByData:=bsDocument.pByData + 32 + 256);
 bsInitVector : RtsByteString := (ui32MaxLen:=TO_UDINT(_szBlock), ui32Len:=TO_UDINT(_szBlock), pbyData:=bsDocument.pByData + 32 + 256 + 256);

 Result : RTS_IEC_RESULT;

 abyKey : ARRAY[0..31] OF BYTE; // 256 Bit
 bsKey : RtsByteString := (ui32MaxLen:=SIZEOF(abyKey), ui32Len:=0, pbyData:=ADR(abyKey));
 ksStorage : RtsCryptoKeyStorage := (byteString:=bsKey);
 ckKey : RtsCryptoKey := (keyType:=RtsCryptoKeyType.KeyType_Key, key:=ksStorage);

 ckPrivateKey : RtsCryptoKey;
 bsCollection : RtsByteString := (ui32MaxLen:=32 + 256, ui32Len:=32 + 256, pByData:=bsDocument.pByData);

END_VAR

// Asymmetric Verify the Signature of the Collection of Encrypted Data and Encrypted Key with the Sender's Prublic Key
Result := CryptoSignatureVerify(
 hAlgo:=_hAsymmetricSigningCipher,
 pData:=ADR(bsCollection),
 publicKey:=ckPublicKey,
 pSignature:=ADR(bsSignature)
);
IF Result <> ERRORS.ERR_OK THEN
 RETURN;
END_IF

Result := X509CertGetPrivateKey(
 hCertStore:=_hCertStore,
 hCert:=_hCert,
 pPrivateKey:=ADR(ckPrivateKey)
);

// Asymmetric Decrypt the Encrypted Key with the Receivers's Private Key
Result := CryptoAsymmetricDecrypt(
 hAlgo:=_hAsymmetricCryptingCipher,
 pCipherText:=ADR(bsEncryptedKey),
 privateKey:=ckPrivateKey,
 pPlainText:=ADR(bsKey)
);

// Symmetric Decrypt Data using Decrypted Key
Result := CryptoSymmetricDecrypt(
 hAlgo:=_hSymmetricCryptoCipher,
 pCipherText:=ADR(bsEncryptedData),
 key:=ckKey,
 pInitVector:=ADR(bsInitVector),
 xEnablePadding:=TRUE,
 pPlainText:=ADR(bsData)
);

Note

Ths methods are appropriate for handling data records in an untrusted environment. This effort is not necessary in a
trusted environment like transmitting data over a TLS-Connection for the TCP-Protocol.

Crypto Example

15/15

	CmpCrypto and CmpX509Cert
	Random Numbers
	Hashing
	Hashed Based Message Authentication Code
	Encryption
	Symmetric Encryption
	Exemplary usage of AES-256 in CBC Mode
	Combination of Signing and Encrypting

	Asymmetric Encryption
	Key pair Generation
	Certificate Access
	Encryption
	Decryption
	Signing
	Verifying

	Pay by Use

