Search talk: ios

 

class with IOs CODESYS Forge talk (Thread)
class with IOs
Last updated: 2017-02-20

IOs in Klassen CODESYS Forge talk (Thread)
IOs in Klassen
Last updated: 2017-02-08

auf Adressen gemappte IOs CODESYS Forge talk (Thread)
auf Adressen gemappte IOs
Last updated: 2015-09-07

Drop-In replacement for Beckhoff IOs? CODESYS Forge talk (Thread)
Drop-In replacement for Beckhoff IOs?
Last updated: 2022-07-21

Mapping safety IOs to PLC Logic? CODESYS Forge talk (Thread)
Mapping safety IOs to PLC Logic?
Last updated: 2021-06-30

Webvisu iFram bug on iOS CODESYS Forge talk (Thread)
Webvisu iFram bug on iOS
Last updated: 2019-03-21

T30 motion controler analog IOs CODESYS Forge talk (Thread)
T30 motion controler analog IOs
Last updated: 2006-11-30

Post by timvh on SafetyApp - "Invalid ERR Ack input" CODESYS Forge talk (Post)
I had a similar error "Invalid ERR Ack input". What you need to do is link an variable from the "non-safe" PLC to the Group IOs of the POU in the Safety app. * Add a POU to the SafetyApp (probably already done, otherwise you don't get this error) * Right click on this POU - select properties * Go to the Group IOs tab * Link a variable to the Err.Ackn. input I don't know about the Size of zero, I didn't get this error. Were you able to fix this?
Last updated: 2023-11-16

Post by mondinmr on Direct Pointers in IOMapping for EtherCAT with IoDrvEthercatLib.ETCSlave_Dia CODESYS Forge talk (Post)
Thank you for the response! It's a path I had already considered, however, while it has always worked for me on inputs, it doesn't on outputs, because if I enable the option to update all IOs at every scan, the IO tasks overwrite each other. However, I have found something very interesting which I am posting below.
Last updated: 2024-02-13

Post by mondinmr on Direct Pointers in IOMapping for EtherCAT with IoDrvEthercatLib.ETCSlave_Dia CODESYS Forge talk (Post)
I have found a very interesting solution using: IoConfigTaskMap IoConfigConnectorMap IoConfigChannelMap The first is the list of IO tasks. The second is the connector for each IO module in the IOMap. The third is the individual input or output on the IOMap. One of the properties of the connector is another pointer to a connector, which corresponds with the connector of the EtherCAT slave. Through this information, it is possible to understand to which EtherCAT slave an IO connectormap corresponds. I am attaching an FB that allows for the construction of an IO map and finding the pointer to the actual IOs in the IOMap based on the bitoffset. FUNCTION_BLOCK IOExplorer VAR_INPUT END_VAR VAR_OUTPUT END_VAR VAR inputChannels: COL.LinkedList; outputChannels: COL.LinkedList; ulintFactory: COL.UlintElementFactory; END_VAR METHOD inputAtBitOffsetOfConnector : POINTER TO BYTE VAR_INPUT conn: POINTER TO IoConfigConnectorMap; bitOffset: UDINT; END_VAR VAR it: COL.LinkedListIterator; itf: COL.IElement; elem: COL.iUlintElement; channelInfo: POINTER TO ADVChannelInfo; bitOffsetR: UDINT; END_VAR inputChannels.ElementIterator(it); WHILE it.HasNext() DO it.Next(itfElement => itf); __QUERYINTERFACE(itf, elem); {warning disable C0033} channelInfo := TO___UXINT(elem.UlintValue); {warning restire C0033} IF channelInfo^.connectorField = conn THEN IF bitOffsetR = bitOffset THEN inputAtBitOffsetOfConnector := channelInfo^.addr; RETURN; END_IF bitOffsetR := bitOffsetR + channelInfo^.size; ELSE bitOffsetR := 0; END_IF END_WHILE inputAtBitOffsetOfConnector := 0; END_METHOD METHOD outputAtBitOffsetOfConnector : POINTER TO BYTE VAR_INPUT conn: POINTER TO IoConfigConnectorMap; bitOffset: UDINT; END_VAR VAR it: COL.LinkedListIterator; itf: COL.IElement; elem: COL.iUlintElement; channelInfo: POINTER TO ADVChannelInfo; bitOffsetR: UDINT; END_VAR outputChannels.ElementIterator(it); WHILE it.HasNext() DO it.Next(itfElement => itf); __QUERYINTERFACE(itf, elem); {warning disable C0033} channelInfo := TO___UXINT(elem.UlintValue); {warning restire C0033} IF channelInfo^.connectorField = conn THEN IF bitOffsetR = bitOffset THEN outputAtBitOffsetOfConnector := channelInfo^.addr; RETURN; END_IF bitOffsetR := bitOffsetR + channelInfo^.size; ELSE bitOffsetR := 0; END_IF END_WHILE outputAtBitOffsetOfConnector := 0; END_METHOD METHOD scanIO VAR_INPUT END_VAR VAR numTasks: DINT := IoConfig_Globals.nIoConfigTaskMapCount; tType: WORD; ioTask: POINTER TO IoConfigTaskMap; numCon: WORD; connector: POINTER TO IoConfigConnectorMap; numCh: DWORD; channelInfo: POINTER TO ADVChannelInfo; iTsk: DINT; iCon: WORD; iCh: DWORD; i: DINT; _tmpConnList: COL.IList; elem: COL.IUlintElement; itf: COL.IElement; tmpCh: POINTER TO ADVChannelInfo; lastE: DINT; e: COL.COLLECTION_ERROR; e1: Error; END_VAR VAR_INST lF: COL.ListFactory; END_VAR IF outputChannels.CountElements() > 0 OR inputChannels.CountElements() > 0 THEN RETURN; END_IF _tmpConnList := lF.CreateDynamicList(16, 16); //Iterate through all IO tasks FOR iTsk := 0 TO numTasks - 1 DO ioTask := ADR(IoConfig_Globals.pIoConfigTaskMap[iTsk]); //Store the type of the task (Input or Output) tType := ioTask^.wType; numCon := ioTask^.wNumOfConnectorMap; //Iterate through all connectors of the task FOR iCon := 0 TO numCon - 1 DO connector := ADR(ioTask^.pConnectorMapList[iCon]); numCh := connector^.dwNumOfChannels; //Iterate through all channels of the connector FOR iCh := 0 TO numCh - 1 DO //Create a new channel info object and fill it with the address, connector and size of the channel //Connectors is address of field connector in this case like EtherCAT slave //Address is the address of the IOMap //Size is the size of channel data in bits in IOMap channelInfo := __NEW(ADVChannelInfo); channelInfo^.addr := connector^.pChannelMapList[iCh].pbyIecAddress; channelInfo^.connectorField := connector^.pConnector; channelInfo^.size := connector^.pChannelMapList[iCh].wSize; //We put the channel info a temporary ordered list //Order is based on the address of IOMap lastE := TO_DINT(_tmpConnList.CountElements()) - 1; FOR i := 0 TO lastE DO _tmpConnList.GetElementAt(udiPosition := TO_UDINT(i), itfElement => itf); __QUERYINTERFACE(itf, elem); {warning disable C0033} tmpCh := TO___UXINT(elem.UlintValue); {warning restire C0033} //If the address of the channel is smaller than the address of the channel in the list IF tmpCh^.addr > channelInfo^.addr THEN //Insert the channel in the list at the current position _tmpConnList.InsertElementAt(TO_UDINT(i), ulintFactory.Create(TO_ULINT(channelInfo))); //Clear the channel info pointer channelInfo := 0; //Exit the loop i := lastE + 1; END_IF END_FOR //If the channel info is not 0, it means that the channel was not inserted in the list IF channelInfo <> 0 THEN //Add the channel to the end of the list elem := ulintFactory.Create(TO_ULINT(channelInfo)); _tmpConnList.AddElement(elem); END_IF END_FOR //Iterate temporary list and add the channels to the input or output list lastE := TO_DINT(_tmpConnList.CountElements()) - 1; FOR i := 0 TO lastE DO _tmpConnList.GetElementAt(udiPosition := TO_UDINT(i), itfElement => itf); __QUERYINTERFACE(itf, elem); {warning disable C0033} tmpCh := TO___UXINT(elem.UlintValue); {warning restire C0033} //If type is input, add the channel to the input list IF tType = TaskMapTypes.TMT_INPUTS THEN e := inputChannels.AddElement(ulintFactory.Create(TO_ULINT(tmpCh))); //If type is output, add the channel to the output list ELSIF tType = TaskMapTypes.TMT_OUTPUTS THEN e := outputChannels.AddElement(ulintFactory.Create(TO_ULINT(tmpCh))); ELSE __DELETE(tmpCh); END_IF END_FOR //Clear the temporary list _tmpConnList.RemoveAllElements(); END_FOR END_FOR END_METHOD
Last updated: 2024-02-13

Showing 10 results of 10

Sort by relevance or date